21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genetic manipulation of structural color in bacterial colonies

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d7555035e303">We demonstrate the genetic modification of structural color in a living system by using bacteria Iridescent 1 (IR1) as a model system. IR1 colonies consist of rod-shaped bacteria that pack in a dense hexagonal arrangement through gliding and growth, thus interfering with light to give a bright, green, and glittering appearance. By generating IR1 mutants and mapping their optical properties, we show that genetic alterations can change colony organization and thus their visual appearance. The findings provide insight into the genes controlling structural color, which is important for evolutionary studies and for understanding biological formation at the nanoscale. At the same time, it is an important step toward directed engineering of photonic systems from living organisms. </p><p class="first" id="d7555035e306">Naturally occurring photonic structures are responsible for the bright and vivid coloration in a large variety of living organisms. Despite efforts to understand their biological functions, development, and complex optical response, little is known of the underlying genes involved in the development of these nanostructures in any domain of life. Here, we used <i>Flavobacterium</i> colonies as a model system to demonstrate that genes responsible for gliding motility, cell shape, the stringent response, and tRNA modification contribute to the optical appearance of the colony. By structural and optical analysis, we obtained a detailed correlation of how genetic modifications alter structural color in bacterial colonies. Understanding of genotype and phenotype relations in this system opens the way to genetic engineering of on-demand living optical materials, for use as paints and living sensors. </p>

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Photonic structures in biology.

          Millions of years before we began to manipulate the flow of light using synthetic structures, biological systems were using nanometre-scale architectures to produce striking optical effects. An astonishing variety of natural photonic structures exists: a species of Brittlestar uses photonic elements composed of calcite to collect light, Morpho butterflies use multiple layers of cuticle and air to produce their striking blue colour and some insects use arrays of elements, known as nipple arrays, to reduce reflectivity in their compound eyes. Natural photonic structures are providing inspiration for technological applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biology of color.

            Coloration mediates the relationship between an organism and its environment in important ways, including social signaling, antipredator defenses, parasitic exploitation, thermoregulation, and protection from ultraviolet light, microbes, and abrasion. Methodological breakthroughs are accelerating knowledge of the processes underlying both the production of animal coloration and its perception, experiments are advancing understanding of mechanism and function, and measurements of color collected noninvasively and at a global scale are opening windows to evolutionary dynamics more generally. Here we provide a roadmap of these advances and identify hitherto unrecognized challenges for this multi- and interdisciplinary field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family.

              In this paper minimal standards for the description of new genera and cultivable species in the family Flavobacteriaceae are proposed in accordance with Recommendation 30b of the Bacteriological Code (1990 Revision). In addition to specified phenotypic characteristics, the description of new species should be based on DNA-DNA hybridization data, and the placement of new taxa should be consistent with phylogenetic data derived from 16S rRNA sequencing. An emended description of the family is also proposed as several new taxa have been described since 1996. These proposals have been endorsed by the members of the Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 13 2018
                March 13 2018
                : 115
                : 11
                : 2652-2657
                Article
                10.1073/pnas.1716214115
                5856530
                29472451
                fa3272ef-17cb-428b-9876-7e144df94b23
                © 2018

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article