45
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Open defecation and squat toilets, an overlooked risk of fecal transmission of COVID-19 and other pathogens in developing communities

      review-article
      ,
      Environmental Chemistry Letters
      Springer International Publishing
      Coronavirus, SARS-CoV-2, Infectious agent, Feces, Sanitary, Hygiene

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The novel coronavirus disease COVID-19 has infected over 46 million people in 219 countries and territories. Following evidence of viral loadings and infectivity of feces of infected individuals, public health authorities have suggested to take precautions on the transmission of COVID-19 via fecal-associated routes. Recent discussions on fecal transmission of COVID-19 have mainly focused on municipal sewage. Yet, a widely neglected aspect in containing the virus is that a major part of the population in developing regions do not have access to private, clean sanitary facilities. Therefore, we hypothesize that open defecation and the prevalent use of squat toilets are additional risk factors in those communities. Here, we review fecal transmission of COVID-19, the practices of open defecation, and the resultant routes of transmission of fecal pathogens. Also, we highlight the open design of common squat toilets and the potential exposure to fecal droplets and residues. We observed that at least 20 countries reporting more than 10,000 confirmed infections have 5–26% of their population practicing open defecation. We illustrate the potential routes of transmission of COVID-19 and other fecal pathogens via human feces in communities practicing open defecation. Here, poor hand hygiene, contaminated shoes and objects, mechanical vectors, and outdoor human activities can all contribute to fecal transmission. Other risk factors include squat pans with lidless designs and open flushing mechanisms, in-cubicle open waste bins, and the lack of water-sealing U-traps in squat toilets.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          COVID-19: Gastrointestinal Manifestations and Potential Fecal–Oral Transmission

          The outbreak of novel coronavirus (2019-nCoV) pneumonia initially developed in one of the largest cities, Wuhan, Hubei province of China, in early December 2019 and has been declared the sixth public health emergency of international concern by the World Health Organization, and subsequently named coronavirus disease 2019 (COVID-19). As of February 20, 2020, a total of >75,000 cumulative confirmed cases and 2130 deaths have been documented globally in 26 countries across 5 continents. Current studies reveal that respiratory symptoms of COVID-19 such as fever, dry cough, and even dyspnea represent the most common manifestations at presentation similar to severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome in 2012, which is firmly indicative of droplet transmission and contact transmission. However, the incidence of less common features like diarrhea, nausea, vomiting, and abdominal discomfort varies significantly among different study populations, along with an early and mild onset frequently followed by typical respiratory symptoms. 1 Mounting evidence from former studies of SARS indicated that the gastrointestinal tract (intestine) tropism of SARS coronavirus (SARS-CoV) was verified by the viral detection in biopsy specimens and stool even in discharged patients, which may partially provide explanations for the gastrointestinal symptoms, potential recurrence, and transmission of SARS from persistently shedding human as well. 2 Notably, the first case of 2019-nCoV infection confirmed in the United States reported a 2-day history of nausea and vomiting on admission, and then passed a loose bowel movement on hospital day 2. The viral nucleic acids of loose stool and both respiratory specimens later tested positive. 3 In addition, 2019-nCoV sequence could be also detected in the self-collected saliva of most infected patients even not in nasopharyngeal aspirate, and serial saliva specimens monitoring showed declines of salivary viral load after hospitalization. 4 Given that extrapulmonary detection of viral RNA does not mean infectious virus is present, further positive viral culture suggests the possibility of salivary gland infection and possible transmission. 4 More recently, 2 independent laboratories from China declared that they have successfully isolated live 2019-nCoV from the stool of patients (unpublished). Taken together, a growing number of clinical evidence reminds us that digestive system other than respiratory system may serve as an alternative route of infection when people are in contact with infected wild animals or sufferers, and asymptomatic carriers or individuals with mild enteric symptoms at an early stage must have been neglected or underestimated in previous investigations. Clinicians should be careful to promptly identify the patients with initial gastrointestinal symptoms and explore the duration of infectivity with delayed viral conversion. To date, molecular modelling has revealed by the next-generation sequencing technology that 2019-nCoV shares about 79% sequence identify with SARS-CoV, indicative of these 2 lineage B β-coronaviruses highly homologous, and angiotensin-converting enzyme II (ACE2), previously known as an entry receptor for SARS-CoV, was exclusively confirmed in 2019-nCoV infection despite amino acid mutations at some key receptor-binding domains. 5 , 6 It is widely accepted that coronavirus human transmissibility and pathogenesis mainly depend on the interactions, including virus attachment, receptor recognition, protease cleaving and membrane fusion, of its transmembrane spike glycoprotein (S-protein) receptor-binding domain, specific cell receptors (ACE2), and host cellular transmembrane serine protease (TMPRSS), with binding affinity of 2019-nCoV about 73% of SARS-CoV. 7 Recent bioinformatics analysis on available single-cell transcriptomes data of normal human lung and gastrointestinal system was carried out to identify the ACE2-expressing cell composition and proportion, and revealed that ACE2 was not only highly expressed in the lung AT2 cells, but also in esophagus upper and stratified epithelial cells and absorptive enterocytes from ileum and colon. 8 With the increasing gastrointestinal wall permeability to foreign pathogens once virus infected, enteric symptoms like diarrhea will occur by the invaded enterocytes malabsorption, which in theory indicated the digestive system might be vulnerable to COVID-19 infection. In contrast, because ACE2 and TMPRSS especially TMPRSS2 are co-localized in the same host cells and the latter exerts hydrolytic effects responsible for S-protein priming and viral entry into target cells, further bioinformatics investigation renders additional evidence for enteric infectivity of COVID-19 in that the high co-expression ratio was found in absorptive enterocytes and upper epithelial cells of esophagus besides lung AT2 cells. However, the exact mechanism of COVID-19–induced gastrointestinal symptom largely remains elusive. Based on these considerations, ACE2-based strategies against COVID-19 such as ACE2 fusion proteins and TMPRSS2 inhibitors should be accelerated into clinical research and development for diagnosis, prophylaxis, or treatment. Last, mild to moderate liver injury, including elevated aminotransferases, hypoproteinemia, and prothrombin time prolongation, has been reported in the existing clinical investigations of COVID-19, whereas up to 60% of patients suffering from SARS had liver impairment. The presence of viral nucleic acids of SARS in liver tissue confirmed the coronavirus direct infection in liver, and percutaneous liver biopsies of SARS showed conspicuous mitoses and apoptosis along with atypical features such as acidophilic bodies, ballooning of hepatocytes, and lobular activities without fibrin deposition or fibrosis. 9 It is believed that SARS-associated hepatotoxicity may be likely with viral hepatitis or a secondary effect associated with drug toxicity owing to high-dose consumption of antiviral medications, antibiotics, and steroids, as well as immune system overreaction. However, little is known about 2019-nCoV infection in liver. Surprisingly, recent single cell RNA sequencing data from 2 independent cohorts revealed a significant enrichment of ACE2 expression in cholangiocytes (59.7% of cells) instead of hepatocytes (2.6% of cells), suggesting that 2019-nCoV might lead to direct damage to the intrahepatic bile ducts. 10 Altogether, substantial effort should be made to be alert on the initial digestive symptoms of COVID-19 for early detection, early diagnosis, early isolation, and early intervention.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            It is Time to Address Airborne Transmission of COVID-19

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus

              There is uncertainty about the mode of transmission of the severe acute respiratory syndrome (SARS) virus. We analyzed the temporal and spatial distributions of cases in a large community outbreak of SARS in Hong Kong and examined the correlation of these data with the three-dimensional spread of a virus-laden aerosol plume that was modeled using studies of airflow dynamics. We determined the distribution of the initial 187 cases of SARS in the Amoy Gardens housing complex in 2003 according to the date of onset and location of residence. We then studied the association between the location (building, floor, and direction the apartment unit faced) and the probability of infection using logistic regression. The spread of the airborne, virus-laden aerosols generated by the index patient was modeled with the use of airflow-dynamics studies, including studies performed with the use of computational fluid-dynamics and multizone modeling. The curves of the epidemic suggested a common source of the outbreak. All but 5 patients lived in seven buildings (A to G), and the index patient and more than half the other patients with SARS (99 patients) lived in building E. Residents of the floors at the middle and upper levels in building E were at a significantly higher risk than residents on lower floors; this finding is consistent with a rising plume of contaminated warm air in the air shaft generated from a middle-level apartment unit. The risks for the different units matched the virus concentrations predicted with the use of multizone modeling. The distribution of risk in buildings B, C, and D corresponded well with the three-dimensional spread of virus-laden aerosols predicted with the use of computational fluid-dynamics modeling. Airborne spread of the virus appears to explain this large community outbreak of SARS, and future efforts at prevention and control must take into consideration the potential for airborne spread of this virus. Copyright 2004 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                jiehan@xjtu.edu.cn
                Journal
                Environ Chem Lett
                Environ Chem Lett
                Environmental Chemistry Letters
                Springer International Publishing (Cham )
                1610-3653
                1610-3661
                29 November 2020
                : 1-9
                Affiliations
                GRID grid.43169.39, ISNI 0000 0001 0599 1243, Department of Environmental Science and Engineering, , Xi’an Jiaotong University, ; Xi’an, 710049 People’s Republic of China
                Author information
                http://orcid.org/0000-0001-6790-0650
                Article
                1143
                10.1007/s10311-020-01143-1
                7700112
                33281530
                f9c787da-336c-4dc9-bb9c-d374273e6ce7
                © Springer Nature Switzerland AG 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 4 November 2020
                : 17 November 2020
                Funding
                Funded by: “Young Talent Support Plan” of Xi’an Jiaotong University
                Categories
                Review

                Environmental chemistry
                coronavirus,sars-cov-2,infectious agent,feces,sanitary,hygiene
                Environmental chemistry
                coronavirus, sars-cov-2, infectious agent, feces, sanitary, hygiene

                Comments

                Comment on this article