9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dihydroartemisinin and gefitinib synergistically inhibit NSCLC cell growth and promote apoptosis via the Akt/mTOR/STAT3 pathway

      , , , , ,
      Molecular Medicine Reports
      Spandidos Publications

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR.

          Non-small-cell lung cancer with sensitive mutations of the epidermal growth factor receptor (EGFR) is highly responsive to EGFR tyrosine kinase inhibitors such as gefitinib, but little is known about how its efficacy and safety profile compares with that of standard chemotherapy. We randomly assigned 230 patients with metastatic, non-small-cell lung cancer and EGFR mutations who had not previously received chemotherapy to receive gefitinib or carboplatin-paclitaxel. The primary end point was progression-free survival; secondary end points included overall survival, response rate, and toxic effects. In the planned interim analysis of data for the first 200 patients, progression-free survival was significantly longer in the gefitinib group than in the standard-chemotherapy group (hazard ratio for death or disease progression with gefitinib, 0.36; P<0.001), resulting in early termination of the study. The gefitinib group had a significantly longer median progression-free survival (10.8 months, vs. 5.4 months in the chemotherapy group; hazard ratio, 0.30; 95% confidence interval, 0.22 to 0.41; P<0.001), as well as a higher response rate (73.7% vs. 30.7%, P<0.001). The median overall survival was 30.5 months in the gefitinib group and 23.6 months in the chemotherapy group (P=0.31). The most common adverse events in the gefitinib group were rash (71.1%) and elevated aminotransferase levels (55.3%), and in the chemotherapy group, neutropenia (77.0%), anemia (64.6%), appetite loss (56.6%), and sensory neuropathy (54.9%). One patient receiving gefitinib died from interstitial lung disease. First-line gefitinib for patients with advanced non-small-cell lung cancer who were selected on the basis of EGFR mutations improved progression-free survival, with acceptable toxicity, as compared with standard chemotherapy. (UMIN-CTR number, C000000376.) 2010 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.

            Most patients with non-small-cell lung cancer have no response to the tyrosine kinase inhibitor gefitinib, which targets the epidermal growth factor receptor (EGFR). However, about 10 percent of patients have a rapid and often dramatic clinical response. The molecular mechanisms underlying sensitivity to gefitinib are unknown. We searched for mutations in the EGFR gene in primary tumors from patients with non-small-cell lung cancer who had a response to gefitinib, those who did not have a response, and those who had not been exposed to gefitinib. The functional consequences of identified mutations were evaluated after the mutant proteins were expressed in cultured cells. Somatic mutations were identified in the tyrosine kinase domain of the EGFR gene in eight of nine patients with gefitinib-responsive lung cancer, as compared with none of the seven patients with no response (P<0.001). Mutations were either small, in-frame deletions or amino acid substitutions clustered around the ATP-binding pocket of the tyrosine kinase domain. Similar mutations were detected in tumors from 2 of 25 patients with primary non-small-cell lung cancer who had not been exposed to gefitinib (8 percent). All mutations were heterozygous, and identical mutations were observed in multiple patients, suggesting an additive specific gain of function. In vitro, EGFR mutants demonstrated enhanced tyrosine kinase activity in response to epidermal growth factor and increased sensitivity to inhibition by gefitinib. A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene, which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib. These mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor. Screening for such mutations in lung cancers may identify patients who will have a response to gefitinib. Copyright 2004 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural products as sources of new drugs over the last 25 years.

              This review is an updated and expanded version of two prior reviews that were published in this journal in 1997 and 2003. In the case of all approved agents the time frame has been extended to include the 251/2 years from 01/1981 to 06/2006 for all diseases worldwide and from 1950 (earliest so far identified) to 06/2006 for all approved antitumor drugs worldwide. We have continued to utilize our secondary subdivision of a "natural product mimic" or "NM" to join the original primary divisions. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, over the time frame from around the 1940s to date, of the 155 small molecules, 73% are other than "S" (synthetic), with 47% actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the antiinfective area being dependent on natural products and their structures. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have, in fact, been used in the optimization of many recently approved agents, we are able to identify only one de novo combinatorial compound approved as a drug in this 25 plus year time frame. We wish to draw the attention of readers to the rapidly evolving recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated", and therefore we consider that this area of natural product research should be expanded significantly.
                Bookmark

                Author and article information

                Journal
                Molecular Medicine Reports
                Spandidos Publications
                1791-2997
                1791-3004
                March 2017
                July 14 2017
                July 14 2017
                March 2017
                July 14 2017
                July 14 2017
                : 16
                : 3
                : 3475-3481
                Article
                10.3892/mmr.2017.6989
                28713965
                f8c0ea54-b86c-457a-b6fb-35fb8f71502e
                © 2017
                History

                Comments

                Comment on this article