14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diaphragm thickening fraction predicts noninvasive ventilation outcome: a preliminary physiological study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A correlation between unsuccessful noninvasive ventilation (NIV) and poor outcome has been suggested in de-novo Acute Respiratory Failure (ARF) patients. Consequently, it is of paramount importance to identify accurate predictors of NIV outcome. The aim of our preliminary study is to evaluate the Diaphragmatic Thickening Fraction (DTF) and the respiratory rate/DTF ratio as predictors of NIV outcome in de-novo ARF patients.

          Methods

          Over 36 months, we studied patients admitted to the emergency department with a diagnosis of de-novo ARF and requiring NIV treatment. DTF and respiratory rate/DTF ratio were measured by 2 trained operators at baseline, at 1, 4, 12, 24, 48, 72 and 96 h of NIV treatment and/or until NIV discontinuation or intubation. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the ability of DTF and respiratory rate/DTF ratio to distinguish between patients who were successfully weaned and those who failed.

          Results

          Eighteen patients were included. We found overall good repeatability of DTF assessment, with Intra-class Correlation Coefficient (ICC) of 0.82 (95% confidence interval 0.72–0.88). The cut-off values of DTF for prediction of NIV failure were < 36.3% and < 37.1% for the operator 1 and 2 ( p < 0.0001), respectively. The cut-off value of respiratory rate/DTF ratio for prediction of NIV failure was > 0.6 for both operators ( p < 0.0001).

          Conclusion

          DTF and respiratory rate/DTF ratio may both represent valid, feasible and noninvasive tools to predict NIV outcome in patients with de-novo ARF.

          Trial registration ClinicalTrials.gov Identifier: NCT02976233, registered 26 November 2016.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found

          The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

          Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute respiratory distress syndrome: the Berlin Definition.

            The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories of ARDS based on degree of hypoxemia: mild (200 mm Hg < PaO2/FIO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FIO2 ≤ 200 mm Hg), and severe (PaO2/FIO2 ≤ 100 mm Hg) and 4 ancillary variables for severe ARDS: radiographic severity, respiratory system compliance (≤40 mL/cm H2O), positive end-expiratory pressure (≥10 cm H2O), and corrected expired volume per minute (≥10 L/min). The draft Berlin Definition was empirically evaluated using patient-level meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition. Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%; 95% CI, 24%-30%; 32%; 95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P < .001) and increased median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively; P < .001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0.520-0.553; P < .001). This updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition. The approach of combining consensus discussions with empirical evaluation may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study.

              To develop and validate a new Simplified Acute Physiology Score, the SAPS II, from a large sample of surgical and medical patients, and to provide a method to convert the score to a probability of hospital mortality. The SAPS II and the probability of hospital mortality were developed and validated using data from consecutive admissions to 137 adult medical and/or surgical intensive care units in 12 countries. The 13,152 patients were randomly divided into developmental (65%) and validation (35%) samples. Patients younger than 18 years, burn patients, coronary care patients, and cardiac surgery patients were excluded. Vital status at hospital discharge. The SAPS II includes only 17 variables: 12 physiology variables, age, type of admission (scheduled surgical, unscheduled surgical, or medical), and three underlying disease variables (acquired immunodeficiency syndrome, metastatic cancer, and hematologic malignancy). Goodness-of-fit tests indicated that the model performed well in the developmental sample and validated well in an independent sample of patients (P = .883 and P = .104 in the developmental and validation samples, respectively). The area under the receiver operating characteristic curve was 0.88 in the developmental sample and 0.86 in the validation sample. The SAPS II, based on a large international sample of patients, provides an estimate of the risk of death without having to specify a primary diagnosis. This is a starting point for future evaluation of the efficiency of intensive care units.
                Bookmark

                Author and article information

                Contributors
                giovanna.mercurio@policlinicogemelli.it
                Journal
                Crit Care
                Critical Care
                BioMed Central (London )
                1364-8535
                1466-609X
                26 June 2021
                26 June 2021
                2021
                : 25
                : 219
                Affiliations
                [1 ]GRID grid.414603.4, Department of Anesthesiology, Intensive Care and Emergency Medicine, , Fondazione Policlinico Universitario A. Gemelli IRCCS, ; Largo A. Gemelli, 8, 00168 Rome, Italy
                [2 ]GRID grid.414603.4, Biostatistics, Office of the Scientific Director, , Fondazione Policlinico Universitario A. Gemelli IRCCS, ; Rome, Italy
                [3 ]GRID grid.8142.f, ISNI 0000 0001 0941 3192, Institute of Anesthesiology and Intensive Care Medicine, , Catholic University of the Sacred Heart, ; Rome, Italy
                Author information
                http://orcid.org/0000-0002-3915-298X
                Article
                3638
                10.1186/s13054-021-03638-x
                8233594
                34174903
                f8634f84-30fd-4833-92e4-40d839171cc1
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 13 April 2021
                : 9 June 2021
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Emergency medicine & Trauma
                acute respiratory failure,noninvasive ventilation,ultrasound,diaphragm thickening fraction,rapid shallow breathing index

                Comments

                Comment on this article