64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Lectin Pathway of Complement and Rheumatic Heart Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: not found

          Collections and ficolins: humoral lectins of the innate immune defense.

          Collectins and ficolins, present in plasma and on mucosal surfaces, are humoral molecules of the innate immune systems, which recognize pathogen-associated molecular patterns. The human collectins, mannan-binding lectin (MBL) and surfactant protein A and D (SP-A and SP-D), are oligomeric proteins composed of carbohydrate-recognition domains (CRDs) attached to collagenous regions and are thus structurally similar to the ficolins, L-ficolin, M-ficolin, and H-ficolin. However, they make use of different CRD structures: C-type lectin domains for the collectins and fibrinogen-like domains for the ficolins. Upon recognition of the infectious agent, MBL and the ficolins initiate the lectin pathway of complement activation through attached serine proteases (MASPs), whereas SP-A and SP-D rely on other effector mechanisms: direct opsonization, neutralization, and agglutination. This limits the infection and concurrently orchestrates the subsequent adaptive immune response. Deficiencies of the proteins may predispose to infections or other complications, e.g., reperfusion injuries or autoimmune diseases. Structure, function, clinical implications, and phylogeny are reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A second serine protease associated with mannan-binding lectin that activates complement.

            The complement system comprises a complex array of enzymes and non-enzymatic proteins that is essential for the operation of the innate as well as the adaptive immune defence. The complement system can be activated in three ways: by the classical pathway which is initiated by antibody-antigen complexes, by the alternative pathway initiated by certain structures on microbial surfaces, and by an antibody-independent pathway that is initiated by the binding of mannan-binding lectin (MBL; first described as mannan-binding protein) to carbohydrates. MBL is structurally related to the complement C1 subcomponent, C1q, and seems to activate the complement system through an associated serine protease known as MASP (ref. 4) or p100 (ref. 5), which is similar to C1r and C1s of the classical pathway. MBL binds to specific carbohydrate structures found on the surface of a range of microorganisms, including bacteria, yeasts, parasitic protozoa and viruses, and exhibits antibacterial activity through killing mediated by the terminal, lytic complement components or by promoting phagocytosis. The level of MBL in plasma is genetically determined, and deficiency is associated with frequent infections in childhood, and possibly also in adults (for review, see ref. 6). We have now identified a new MBL-associated serine protease (MASP-2) which shows a striking homology with the previously reported MASP (MASP-1) and the two C1q-associated serine proteases C1r and C1s. Thus complement activation through MBL, like the classical pathway, involves two serine proteases and may antedate the development of the specific immune system of vertebrates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition.

              Mannose-binding lectin (MBL) is a collagenous serum lectin believed to be of importance in innate immunity. Genetically determined low levels of the protein are known to predispose to infections. In this study the binding of purified MBL to pathogens isolated from immunocompromised children was investigated by flow cytometry. Diverse Candida species, Aspergillus fumigatus, Staphylococcus aureus, and beta-hemolytic group A streptococci exhibited strong binding of MBL, whereas Escherichia coli, Klebsiella species, and Haemophilus influenzae type b were characterized by heterogeneous binding patterns. In contrast, beta-hemolytic group B streptococci, Streptococcus pneumoniae, and Staphylococcus epidermidis showed low levels of binding. Bound MBL was able to promote C4 deposition in a concentration-dependent manner. We conclude that MBL may be of importance in first-line immune defense against several important pathogens.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/201712
                URI : http://frontiersin.org/people/u/173432
                URI : http://frontiersin.org/people/u/189340
                URI : http://frontiersin.org/people/u/184053
                URI : http://frontiersin.org/people/u/148043
                Journal
                Front Pediatr
                Front Pediatr
                Front. Pediatr.
                Frontiers in Pediatrics
                Frontiers Media S.A.
                2296-2360
                03 September 2014
                21 January 2015
                2014
                : 2
                : 148
                Affiliations
                [1] 1Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná , Curitiba, Brazil
                [2] 2Department of Genetics, Universidade Federal do Paraná , Curitiba, Brazil
                Author notes

                Edited by: Luiza Guilherme, University of São Paulo, Brazil

                Reviewed by: Seppo Meri, University of Helsinki, Finland; Karine Marafigo De Amicis, University of São Paulo, Brazil

                *Correspondence: Iara José de Messias Reason, Departamento de Patologia Clínica, Setor de Ciências da Saúde, Hospital das Clínicas, Universidade Federal do Paraná, Rua General Carneiro, 181, Curitiba 80060-900, PR, Brazil e-mail: iarareason@ 123456hc.ufpr.br

                This article was submitted to Pediatric Cardiology, a section of the journal Frontiers in Pediatrics.

                Article
                10.3389/fped.2014.00148
                4300866
                25654073
                f73d940a-6d14-4706-a519-5974267f28fd
                Copyright © 2015 Beltrame, Catarino, Goeldner, Boldt and de Messias-Reason.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 July 2014
                : 29 December 2014
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 181, Pages: 14, Words: 12493
                Categories
                Pediatrics
                Review Article

                lectin pathway,complement system,mbl,ficolins,gene polymorphisms

                Comments

                Comment on this article