17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Is Lactate an Oncometabolite? Evidence Supporting a Role for Lactate in the Regulation of Transcriptional Activity of Cancer-Related Genes in MCF7 Breast Cancer Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactate is a ubiquitous molecule in cancer. In this exploratory study, our aim was to test the hypothesis that lactate could function as an oncometabolite by evaluating whether lactate exposure modifies the expression of oncogenes, or genes encoding transcription factors, cell division, and cell proliferation in MCF7 cells, a human breast cancer cell line. Gene transcription was compared between MCF7 cells incubated in (a) glucose/glutamine-free media (control), (b) glucose-containing media to stimulate endogenous lactate production (replicating some of the original Warburg studies), and (c) glucose-containing media supplemented with L-lactate (10 and 20 mM). We found that both endogenous, glucose-derived lactate and exogenous, lactate supplementation significantly affected the transcription of key oncogenes (MYC, RAS, and PI3KCA), transcription factors (HIF1A and E2F1), tumor suppressors (BRCA1, BRCA2) as well as cell cycle and proliferation genes involved in breast cancer (AKT1, ATM, CCND1, CDK4, CDKN1A, CDK2B) (0.001 < p < 0.05 for all genes). Our findings support the hypothesis that lactate acts as an oncometabolite in MCF7 cells. Further research is necessary on other cell lines and biopsy cultures to show generality of the findings and reveal the mechanisms by which dysregulated lactate metabolism could act as an oncometabolite in carcinogenesis.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Lactate Metabolism in Human Lung Tumors

          Cancer cells consume glucose and secrete lactate in culture. It is unknown whether lactate contributes to energy metabolism in living tumors. We previously reported that human non-small cell lung cancers (NSCLC) oxidize glucose in the tricarboxylic acid (TCA) cycle. Here we show that lactate is also a TCA cycle carbon source for NSCLC. In human NSCLC, evidence of lactate utilization was most apparent in tumors with high 18 fluorodeoxyglucose uptake and aggressive oncological behavior. Infusing human NSCLC patients with 13 C-lactate revealed extensive labeling of TCA cycle metabolites. In mice, deleting monocarboxylate transporter-1 (MCT1) from tumor cells eliminated lactate-dependent metabolite labeling, confirming tumor-cell autonomous lactate uptake. Strikingly, directly comparing lactate and glucose metabolism in vivo indicated that lactate's contribution to the TCA cycle predominates. The data indicate that tumors, including bona fide human NSCLC, can use lactate as a fuel in vivo. Human non-small cell lung cancer preferentially utilizes lactate over glucose to fuel TCA cycle and sustain tumor metabolism in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion

            The metabolic characteristics of tumors present considerable hurdles to immune cell function and cancer immunotherapy. Using a glutamine antagonist, we metabolically dismantled the immunosuppressive microenvironment of tumors. We demonstrate that glutamine blockade in tumor-bearing mice suppresses oxidative and glycolytic metabolism of cancer cells, leading to decreased hypoxia, acidosis, and nutrient depletion. By contrast, effector T cells responded to glutamine antagonism by markedly up-regulating oxidative metabolism and adopting a long-lived, highly activated phenotype. These divergent changes in cellular metabolism and programming form the basis for potent antitumor responses. Glutamine antagonism therefore exposes a previously undefined difference in metabolic plasticity between cancer cells and effector T cells that can be exploited as a “metabolic checkpoint” for tumor immunotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis.

              Inactivation of the p53 tumor suppressor is a frequent event in tumorigenesis. In most cases, the p53 gene is mutated, giving rise to a stable mutant protein whose accumulation is regarded as a hallmark of cancer cells. Mutant p53 proteins not only lose their tumor suppressive activities but often gain additional oncogenic functions that endow cells with growth and survival advantages. Interestingly, mutations in the p53 gene were shown to occur at different phases of the multistep process of malignant transformation, thus contributing differentially to tumor initiation, promotion, aggressiveness, and metastasis. Here, the authors review the different studies on the involvement of p53 inactivation at various stages of tumorigenesis and highlight the specific contribution of p53 mutations at each phase of cancer progression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                14 January 2020
                2019
                : 9
                : 1536
                Affiliations
                [1] 1Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine , Aurora, CO, United States
                [2] 2Department of Human Physiology and Nutrition, University of Colorado , Colorado Springs, CO, United States
                [3] 3Department of Medicine, University of Colorado School of Medicine , Aurora, CO, United States
                [4] 4Department of Integrative Biology, University of California, Berkeley , Berkeley, CA, United States
                Author notes

                Edited by: Paolo E. Porporato, University of Turin, Italy

                Reviewed by: Pierre Sonveaux, Catholic University of Louvain, Belgium; Fatima Baltazar, University of Minho, Portugal

                *Correspondence: Iñigo San-Millán inigo.sanmillan@ 123456cuanschutz.edu

                This article was submitted to Cancer Metabolism, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2019.01536
                6971189
                32010625
                f729f220-1fb9-4772-8b47-7d7674dc79ba
                Copyright © 2020 San-Millán, Julian, Matarazzo, Martinez and Brooks.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 October 2019
                : 19 December 2019
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 82, Pages: 10, Words: 7449
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                lactate,cancer,oncogenes,transcription factors,cell cycle genes
                Oncology & Radiotherapy
                lactate, cancer, oncogenes, transcription factors, cell cycle genes

                Comments

                Comment on this article