12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prevalence of potential mediators of artemisinin resistance in African isolates of Plasmodium falciparum

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The devastating public health impact of malaria has prompted the need for effective interventions. Malaria control gained traction after the introduction of artemisinin-based combination therapy (ACT). However, the emergence of artemisinin (ART) partial resistance in Southeast Asia and emerging reports of delayed parasite sensitivity to ACT in African parasites signal a gradual trend towards treatment failure. Monitoring the prevalence of mutations associated with artemisinin resistance in African populations is necessary to stop resistance in its tracks. Mutations in Plasmodium falciparum genes pfk13, pfcoronin and pfatpase6 have been linked with ART partial resistance.

          Methods

          Findings from published research articles on the prevalence of pfk13, pfcoronin and pfatpase6 polymorphisms in Africa were collated. PubMed, Embase and Google Scholar were searched for relevant articles reporting polymorphisms in these genes across Africa from 2014 to August 2021, for pfk13 and pfcoronin. For pfatpase6, relevant articles between 2003 and August 2021 were retrieved.

          Results

          Eighty-seven studies passed the inclusion criteria for this analysis and reported 742 single nucleotide polymorphisms in 37,864 P. falciparum isolates from 29 African countries. Five validated- pfk13 partial resistance markers were identified in Africa: R561H in Rwanda and Tanzania, M476I in Tanzania, F446I in Mali, C580Y in Ghana, and P553L in an Angolan isolate. In Tanzania, three (L263E, E431K, S769N) of the four mutations (L263E, E431K, A623E, S769N) in pfatpase6 gene associated with high in vitro IC 50 were reported. pfcoronin polymorphisms were reported in Senegal, Gabon, Ghana, Kenya, and Congo, with P76S being the most prevalent mutation.

          Conclusions

          This meta-analysis provides an overview of the prevalence and widespread distribution of pfk13, pfcoronin and pfatpase6 mutations in Africa. Understanding the phenotypic consequences of these mutations can provide information on the efficacy status of artemisinin-based treatment of malaria across the continent.

          Graphical Abstract

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12936-021-03987-6.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015

          Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015 and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542–753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A molecular marker of artemisinin-resistant Plasmodium falciparum malaria.

            Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artemisinin resistance in Plasmodium falciparum malaria.

              Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai-Cambodian border, historically a site of emerging antimalarial-drug resistance. In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance. We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate-mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P=0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco-endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups. P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.) 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                oyebolakolapo@yahoo.com
                Journal
                Malar J
                Malar J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                2 December 2021
                2 December 2021
                2021
                : 20
                : 451
                Affiliations
                [1 ]GRID grid.416197.c, ISNI 0000 0001 0247 1197, Genomic Research in Biomedicine Laboratory, Biochemistry and Nutrition Department, , Nigerian Institute of Medical Research, ; Lagos, Nigeria
                [2 ]GRID grid.411782.9, ISNI 0000 0004 1803 1817, Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, , University of Lagos, ; Lagos, Nigeria
                [3 ]GRID grid.279885.9, ISNI 0000 0001 2293 4638, Sickle Cell Branch, , National Heart Lung and Blood Institute, US National Institutes of Health, ; Bethesda, MD USA
                Author information
                http://orcid.org/0000-0002-1003-2570
                Article
                3987
                10.1186/s12936-021-03987-6
                8638531
                34856982
                f5b6b2ef-6042-4578-9446-2967b6d7634a
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 7 July 2021
                : 16 November 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001713, european and developing countries clinical trials partnership;
                Award ID: TMA2019CDF-2782
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                Infectious disease & Microbiology
                artemisinin-based combination therapy,partial resistance,plasmodium falciparum,kelch-13,pfcoronin,pfatpase6,mutations,africa

                Comments

                Comment on this article