36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal ( i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer.

          Carbon supercapacitors, which are energy storage devices that use ion adsorption on the surface of highly porous materials to store charge, have numerous advantages over other power-source technologies, but could realize further gains if their electrodes were properly optimized. Studying the effect of the pore size on capacitance could potentially improve performance by maximizing the electrode surface area accessible to electrolyte ions, but until recently, no studies had addressed the lower size limit of accessible pores. Using carbide-derived carbon, we generated pores with average sizes from 0.6 to 2.25 nanometer and studied double-layer capacitance in an organic electrolyte. The results challenge the long-held axiom that pores smaller than the size of solvated electrolyte ions are incapable of contributing to charge storage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon.

            Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices. By offering fast charging and discharging rates, and the ability to sustain millions of cycles, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s(-1), which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metal-organic framework as a template for porous carbon synthesis.

              Porous carbon was synthesized by heating the precursor FA within the pores of MOF-5. The resultant carbon displayed a high specific surface area (BET, 2872 m2.g-1) and important hydrogen uptake (2.6 wt % at 760 Torr, -196 degrees C) as well as excellent electrochemical properties as an electrode material for electrochemical double-layered capacitor (EDLC).
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                29 July 2016
                2016
                : 6
                : 30295
                Affiliations
                [1 ]Mesoscale Materials Chemistry Laboratory, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
                [2 ]Faculty of Science and Engineering, Waseda University , 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
                [3 ]Department of Chemistry, College of Science, King Saud University , Riyadh 11451, Saudi Arabia
                [4 ]TOC Capacitor, 1525 Okaya , Nagano, 394-0001, Japan
                [5 ]Australian Institute for Innovative Materials (AIIM), University of Wollongong , North Wollongong, NSW 2500, Australia
                Author notes
                Article
                srep30295
                10.1038/srep30295
                4965863
                27471193
                f5a969e3-9f4c-4edc-962f-55ffee9d8dc0
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 28 April 2016
                : 01 July 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article