Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of the G2 box, a conserved motif in the histidine kinase superfamily, in modulating the function of EnvZ.

      Molecular Microbiology
      Amino Acid Motifs, physiology, Bacterial Outer Membrane Proteins, genetics, Bacterial Proteins, Conserved Sequence, Escherichia coli, enzymology, Escherichia coli Proteins, Histidine, metabolism, Multienzyme Complexes, Mutation, Phosphoprotein Phosphatases, Protein Kinases, chemistry, Trans-Activators

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Histidine kinase EnvZ, a transmembrane osmotic sensor for Escherichia coli, is a bifunctional enzyme having OmpR (its cognate response regulator) kinase and phosphorylated OmpR (OmpR-P) phosphatase activities. Its cytoplasmic domain consists of domain A responsible for dimerization of EnvZ, histidine phosphotransfer and phosphatase activities, and domain B responsible for ATP binding. Here, we have constructed a number of substitution mutations at the G2 box, one of the conserved motifs in domain B, and demonstrated that they influence the phosphatase activity of EnvZ over a wide range. The effects of ADP, a cofactor for the phosphatase activity, were found to be substantially different depending upon the mutations. The effects of these mutations were also examined in vivo using a chimeric Tar-EnvZ construct (Taz1-1), and the results agreed with the in vitro data for the phosphatase and kinase activities for all mutations. Using Taz1-1 carrying the T402A mutation, three independent intragenic suppressor mutations (T235M, S269L and E276K) were isolated, and all were found in domain A. Together, the present results demonstrate for the first time that domain A and domain B are functionally co-ordinated and topologically arranged in a specific manner. The G2 box may modulate the interaction between these two domains in response to extracellular osmolarity.

          Related collections

          Author and article information

          Comments

          Comment on this article