12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Monitoring Lung Injury Severity and Ventilation Intensity during Mechanical Ventilation

      1 , 2 , 3 , 4 , 5 , 1 , 2
      Seminars in Respiratory and Critical Care Medicine
      Georg Thieme Verlag KG

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute respiratory distress syndrome (ARDS) is a severe form of respiratory failure burden by high hospital mortality. No specific pharmacologic treatment is currently available and its ventilatory management is a key strategy to allow reparative and regenerative lung tissue processes. Unfortunately, a poor management of mechanical ventilation can induce ventilation induced lung injury (VILI) caused by physical and biological forces which are at play. Different parameters have been described over the years to assess lung injury severity and facilitate optimization of mechanical ventilation. Indices of lung injury severity include variables related to gas exchange abnormalities, ventilatory setting and respiratory mechanics, ventilation intensity, and the presence of lung hyperinflation versus derecruitment. Recently, specific indexes have been proposed to quantify the stress and the strain released over time using more comprehensive algorithms of calculation such as the mechanical power, and the interaction between driving pressure (DP) and respiratory rate (RR) in the novel DP multiplied by four plus RR [(4 × DP) + RR] index. These new parameters introduce the concept of ventilation intensity as contributing factor of VILI. Ventilation intensity should be taken into account to optimize protective mechanical ventilation strategies, with the aim to reduce intensity to the lowest level required to maintain gas exchange to reduce the potential for VILI. This is further gaining relevance in the current era of phenotyping and enrichment strategies in ARDS.

          Related collections

          Most cited references251

          • Record: found
          • Abstract: found
          • Article: not found

          Acute respiratory distress syndrome: the Berlin Definition.

          The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories of ARDS based on degree of hypoxemia: mild (200 mm Hg < PaO2/FIO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FIO2 ≤ 200 mm Hg), and severe (PaO2/FIO2 ≤ 100 mm Hg) and 4 ancillary variables for severe ARDS: radiographic severity, respiratory system compliance (≤40 mL/cm H2O), positive end-expiratory pressure (≥10 cm H2O), and corrected expired volume per minute (≥10 L/min). The draft Berlin Definition was empirically evaluated using patient-level meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition. Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%; 95% CI, 24%-30%; 32%; 95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P < .001) and increased median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively; P < .001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0.520-0.553; P < .001). This updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition. The approach of combining consensus discussions with empirical evaluation may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries.

            Limited information exists about the epidemiology, recognition, management, and outcomes of patients with the acute respiratory distress syndrome (ARDS).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network.

              Traditional approaches to mechanical ventilation use tidal volumes of 10 to 15 ml per kilogram of body weight and may cause stretch-induced lung injury in patients with acute lung injury and the acute respiratory distress syndrome. We therefore conducted a trial to determine whether ventilation with lower tidal volumes would improve the clinical outcomes in these patients. Patients with acute lung injury and the acute respiratory distress syndrome were enrolled in a multicenter, randomized trial. The trial compared traditional ventilation treatment, which involved an initial tidal volume of 12 ml per kilogram of predicted body weight and an airway pressure measured after a 0.5-second pause at the end of inspiration (plateau pressure) of 50 cm of water or less, with ventilation with a lower tidal volume, which involved an initial tidal volume of 6 ml per kilogram of predicted body weight and a plateau pressure of 30 cm of water or less. The primary outcomes were death before a patient was discharged home and was breathing without assistance and the number of days without ventilator use from day 1 to day 28. The trial was stopped after the enrollment of 861 patients because mortality was lower in the group treated with lower tidal volumes than in the group treated with traditional tidal volumes (31.0 percent vs. 39.8 percent, P=0.007), and the number of days without ventilator use during the first 28 days after randomization was greater in this group (mean [+/-SD], 12+/-11 vs. 10+/-11; P=0.007). The mean tidal volumes on days 1 to 3 were 6.2+/-0.8 and 11.8+/-0.8 ml per kilogram of predicted body weight (P<0.001), respectively, and the mean plateau pressures were 25+/-6 and 33+/-8 cm of water (P<0.001), respectively. In patients with acute lung injury and the acute respiratory distress syndrome, mechanical ventilation with a lower tidal volume than is traditionally used results in decreased mortality and increases the number of days without ventilator use.
                Bookmark

                Author and article information

                Journal
                Seminars in Respiratory and Critical Care Medicine
                Semin Respir Crit Care Med
                Georg Thieme Verlag KG
                1069-3424
                1098-9048
                July 27 2022
                June 2022
                July 27 2022
                June 2022
                : 43
                : 03
                : 346-368
                Affiliations
                [1 ]School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
                [2 ]Department of Emergency and Intensive Care, San Gerardo University Hospital, Monza, Italy
                [3 ]School of Medicine, National University of Ireland, Galway, Ireland
                [4 ]Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospital Group, Galway, Ireland
                [5 ]Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
                Article
                10.1055/s-0042-1748917
                35896391
                f50d89e3-50f8-4e6e-ac71-9a7ef868e24b
                © 2022
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content132

                Cited by20

                Most referenced authors3,499