52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanical stretch triggers rapid epithelial cell division through Piezo1

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite acting as a barrier for the organs they encase, epithelial cells turnover at some of the fastest rates in the body. Yet, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How do the number of dying cells match those dividing to maintain constant numbers? We previously found that when epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die 1 . Conversely, what controls epithelial cell division to balance cell death at steady state? Here, we find that cell division occurs in regions of low cell density, where epithelial cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the same Piezo1 channel. To do so, stretch triggers cells paused in early G2 to activate calcium-dependent ERK1/2 phosphorylation that activates cyclin B transcription necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at steady state, the type of mechanical force controls the outcome: stretch induces cell division whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated since it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions where cells divide, Piezo1 localizes to the plasma membrane and cytoplasm whereas in dense regions where cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion/apoptosis in crowded regions and cell division in sparse regions.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response.

          The Hippo transducers YAP/TAZ have been shown to play positive, as well as negative, roles in Wnt signaling, but the underlying mechanisms remain unclear. Here, we provide biochemical, functional, and genetic evidence that YAP and TAZ are integral components of the β-catenin destruction complex that serves as cytoplasmic sink for YAP/TAZ. In Wnt-ON cells, YAP/TAZ are physically dislodged from the destruction complex, allowing their nuclear accumulation and activation of Wnt/YAP/TAZ-dependent biological effects. YAP/TAZ are required for intestinal crypt overgrowth induced by APC deficiency and for crypt regeneration ex vivo. In Wnt-OFF cells, YAP/TAZ are essential for β-TrCP recruitment to the complex and β-catenin inactivation. In Wnt-ON cells, release of YAP/TAZ from the complex is instrumental for Wnt/β-catenin signaling. In line, the β-catenin-dependent maintenance of ES cells in an undifferentiated state is sustained by loss of YAP/TAZ. This work reveals an unprecedented signaling framework relevant for organ size control, regeneration, and tumor suppression. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Piezos are pore-forming subunits of mechanically activated channels

            Mechanotransduction plays a crucial role in physiology. Biological processes including sensing touch and sound waves require yet unidentified cation channels that detect pressure. Mouse piezo1 (mpiezo1) and mpiezo2 induce mechanically activated cationic currents in cells; however, it is unknown if piezos are pore-forming ion channels or modulate ion channels. We show that Drosophila piezo (dpiezo) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. mpiezo1 assembles as a ~1.2 million-Dalton tetramer, with no evidence of other proteins in this complex. Finally, purified mpiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium red-sensitive ion channels. These data demonstrate that piezos are an evolutionarily conserved ion channel family involved in mechanotransduction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells.

              Neural stem cells are multipotent cells with the ability to differentiate into neurons, astrocytes, and oligodendrocytes. Lineage specification is strongly sensitive to the mechanical properties of the cellular environment. However, molecular pathways transducing matrix mechanical cues to intracellular signaling pathways linked to lineage specification remain unclear. We found that the mechanically gated ion channel Piezo1 is expressed by brain-derived human neural stem/progenitor cells and is responsible for a mechanically induced ionic current. Piezo1 activity triggered by traction forces elicited influx of Ca(2+), a known modulator of differentiation, in a substrate-stiffness-dependent manner. Inhibition of channel activity by the pharmacological inhibitor GsMTx-4 or by siRNA-mediated Piezo1 knockdown suppressed neurogenesis and enhanced astrogenesis. Piezo1 knockdown also reduced the nuclear localization of the mechanoreactive transcriptional coactivator Yes-associated protein. We propose that the mechanically gated ion channel Piezo1 is an important determinant of mechanosensitive lineage choice in neural stem cells and may play similar roles in other multipotent stem cells.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                28 January 2017
                15 February 2017
                02 March 2017
                15 August 2017
                : 543
                : 7643
                : 118-121
                Affiliations
                Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84102
                Author notes
                [* ]Correspondence and requests for materials should be addressed to jody.rosenblatt@ 123456hci.utah.edu .
                Article
                NIHMS846196
                10.1038/nature21407
                5334365
                28199303
                f5018150-976e-495e-a6b2-f53ab63b9fe5

                Reprints and permissions information is available at www.nature.com/reprints.

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article