41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Lead Exposure and Cardiovascular Disease—A Systematic Review

          Objective This systematic review evaluates the evidence on the association between lead exposure and cardiovascular end points in human populations. Methods We reviewed all observational studies from database searches and citations regarding lead and cardiovascular end points. Results A positive association of lead exposure with blood pressure has been identified in numerous studies in different settings, including prospective studies and in relatively homogeneous socioeconomic status groups. Several studies have identified a dose–response relationship. Although the magnitude of this association is modest, it may be underestimated by measurement error. The hypertensive effects of lead have been confirmed in experimental models. Beyond hypertension, studies in general populations have identified a positive association of lead exposure with clinical cardiovascular outcomes (cardiovascular, coronary heart disease, and stroke mortality; and peripheral arterial disease), but the number of studies is small. In some studies these associations were observed at blood lead levels < 5 μg/dL. Conclusions We conclude that the evidence is sufficient to infer a causal relationship of lead exposure with hypertension. We conclude that the evidence is suggestive but not sufficient to infer a causal relationship of lead exposure with clinical cardiovascular outcomes. There is also suggestive but insufficient evidence to infer a causal relationship of lead exposure with heart rate variability. Public Health Implications These findings have immediate public health implications. Current occupational safety standards for blood lead must be lowered and a criterion for screening elevated lead exposure needs to be established in adults. Risk assessment and economic analyses of lead exposure impact must include the cardiovascular effects of lead. Finally, regulatory and public health interventions must be developed and implemented to further prevent and reduce lead exposure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish.

            Consumption of vegetables and fish contaminated with the heavy metals Cu, Zn, Pb, Cd, Hg, and Cr is the most likely route for human exposure in Tianjin, China. Health risks associated with these heavy metals were assessed based on the target hazard quotients (THQs), which can be derived from concentrations of heavy metals in vegetables and fish consumed in four districts (Dong Li, Xi Qing, Jin Nan, and Bei Chen) and the urban area of Tianjin, China. Individual metal THQ ( 1. Risk contribution from Cr is minimal compared to the other elements. Hg is the major risk contributor for children in Bei Chen since the THQ contribution amounts to about 45% of the total THQ values due to vegetables and fish consumption. The health risk to adults in Ding Li is ascribed mainly to the intake of Cd by vegetables and fish consumption, which contributes a substantial fraction to the total THQ (about 51%).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status.

              Because plant wilting has been described as a consequence of cadmium (Cd2+) toxicity, we investigate Cd2+ effects on plant water losses, gas exchanges and stomatal behaviour in Arabidopsis thaliana L. Effects of 1-week Cd2+ application in hydroponic condition (CdCl2 10-100 micro m) were analyzed. A 10- micro m Cd2+ concentration had no significant effect on the plant-water relationship and carbon assimilation. At higher Cd2+ concentrations, a Cd2+ -dependent decrease in leaf conductance and CO2 uptake was observed despite the photosynthetic apparatus appeared not to be affected as probed by fluorescence measurements. In epidermal strip bioassays, nanomolar Cd2+ concentrations reduced stomatal opening under light in A. thaliana, Vicia faba and Commelina communis. Application of 5 micro m ABA limited the root-to-shoot translocation of cadmium. However, the Cd2+-induced stomatal closure was likely ABA-independent, since a 5-day treatment with 50 micro m Cd2+ did not affect the plant relative water content. Additionally, a similar Cd2+-induced stomatal closure was observed in the ABA insensitive mutant abi1-1. Interestingly, this mutant displayed a higher transpiration rate than the wild type but did not accumulate more Cd2+, arguing that Cd2+ uptake is not dependent only on the transpiration flow. Application of putative calcium channels inhibitors suppressed the inhibitory effect of Cd2+ in epidermal strip experiments, suggesting that Cd2+ could enter the guard cell through calcium channels. Patch-clamp studies with V. faba guard cell protoplasts showed that plasma membrane K+ channels were insensitive to external Cd2+ application whereas Ca2+ channels were found permeable to Cd2+. In conclusion, we propose that Cd2+ affects guard cell regulation in an ABA-independent manner by entering the cytosol via Ca2+ channels.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                04 March 2016
                March 2016
                : 13
                : 3
                : 289
                Affiliations
                [1 ]College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; evileyes.z@ 123456163.com (H.Z.); trickmen593@ 123456126.com (W.-T.Y.); bananaxinxin916@ 123456sina.com (X.Z.); liulizxj@ 123456163.com (L.L.); gujiaofeng@ 123456163.com (J.-F.G.); zoujialing1@ 123456126.com (J.-L.Z.); 15700718997@ 123456163.com (T.T.); pqpeng123@ 123456sina.com (P.-Q.P.)
                [2 ]Department of Environmental Science, Changsha Environmental Protection College, Changsha 410004, China
                [3 ]College of Science, Central South University of Forestry and Technology, Changsha 410004, China; wenlei_wang@ 123456hotmail.com
                Author notes
                [* ]Correspondence: liaobohan1020@ 123456163.com ; Tel.: +86-073-189-814-019
                Article
                ijerph-13-00289
                10.3390/ijerph13030289
                4808952
                26959043
                f4d09c2a-8f9e-4659-ab24-837f77bdc794
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 14 January 2016
                : 18 February 2016
                Categories
                Article

                Public health
                heavy metal,accumulation,health risk,vegetable,target hazard quotient (thq)
                Public health
                heavy metal, accumulation, health risk, vegetable, target hazard quotient (thq)

                Comments

                Comment on this article