41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Klebsiella pneumoniae is an important gram-negative opportunistic pathogen that causes a variety of infectious diseases, including urinary tract infections, bacteremia, pneumonia, and liver abscesses. With the emergence of multidrug-resistant (MDR) and hypervirulent K. pneumoniae ( hvKP) strains, the rapid spread of these clinical strains in geography is particularly worrying. However, the detailed mechanisms of virulence and antibiotic resistance in K. pneumoniae are still not very clear. Therefore, studying and elucidating the pathogenic mechanisms and drug resistance mechanism of K. pneumoniae infection are important parts of current medical research. In this paper, we systematically summarized the virulence, biofilm, and antibiotic tolerance mechanisms of K. pneumoniae, and explored the application of whole genome sequencing and global proteomics, which will provide new clues for clinical treatment of K. pneumoniae.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Hypervirulent (hypermucoviscous) Klebsiella pneumoniae

          A new hypervirulent (hypermucoviscous) variant of Klebsiella pneumoniae has emerged. First described in the Asian Pacific Rim, it now increasingly recognized in Western countries. Defining clinical features are the ability to cause serious, life-threatening community-acquired infection in younger healthy hosts, including liver abscess, pneumonia, meningitis and endophthalmitis and the ability to metastatically spread, an unusual feature for enteric Gram-negative bacilli in the non-immunocompromised. Despite infecting a healthier population, significant morbidity and mortality occurs. Although epidemiologic features are still being defined, colonization, particularly intestinal colonization, appears to be a critical step leading to infection. However the route of entry remains unclear. The majority of cases described to date are in Asians, raising the issue of a genetic predisposition vs. geospecific strain acquisition. The traits that enhance its virulence when compared with “classical” K. pneumoniae are the ability to more efficiently acquire iron and perhaps an increase in capsule production, which confers the hypermucoviscous phenotype. An objective diagnostic test suitable for routine use in the clinical microbiology laboratory is needed. If/when these strains become increasingly resistant to antimicrobials, we will be faced with a frightening clinical scenario.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections.

            The emergence of multidrug-resistant gram-negative bacteria and the lack of new antibiotics to combat them have led to the revival of polymyxins, an old class of cationic, cyclic polypeptide antibiotics. Polymyxin B and polymyxin E (colistin) are the 2 polymyxins used in clinical practice. Most of the reintroduction of polymyxins during the last few years is related to colistin. The polymyxins are active against selected gram-negative bacteria, including Acinetobacter species, Pseudomonas aeruginosa, Klebsiella species, and Enterobacter species. These drugs have been used extensively worldwide for decades for local use. However, parenteral use of these drugs was abandoned approximately 20 years ago in most countries, except for treatment of patients with cystic fibrosis, because of reports of common and serious nephrotoxicity and neurotoxicity. Recent studies of patients who received intravenous polymyxins for the treatment of serious P. aeruginosa and Acinetobacter baumannii infections of various types, including pneumonia, bacteremia, and urinary tract infections, have led to the conclusion that these antibiotics have acceptable effectiveness and considerably less toxicity than was reported in old studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypervirulent Klebsiella pneumoniae

              Hypervirulent K. pneumoniae (hvKp) is an evolving pathotype that is more virulent than classical K. pneumoniae (cKp). hvKp usually infects individuals from the community, who are often healthy. Infections are more common in the Asian Pacific Rim but are occurring globally. hvKp infection frequently presents at multiple sites or subsequently metastatically spreads, often requiring source control. hvKp has an increased ability to cause central nervous system infection and endophthalmitis, which require rapid recognition and site-specific treatment. The genetic factors that confer hvKp’s hypervirulent phenotype are present on a large virulence plasmid and perhaps integrative conjugal elements. Increased capsule production and aerobactin production are established hvKp-specific virulence factors. Similar to cKp, hvKp strains are becoming increasingly resistant to antimicrobials via acquisition of mobile elements carrying resistance determinants, and new hvKp strains emerge when extensively drug-resistant cKp strains acquire hvKp-specific virulence determinants, resulting in nosocomial infection. Presently, clinical laboratories are unable to differentiate cKp from hvKp, but recently, several biomarkers and quantitative siderophore production have been shown to accurately predict hvKp strains, which could lead to the development of a diagnostic test for use by clinical laboratories for optimal patient care and for use in epidemiologic surveillance and research studies.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                28 August 2020
                September 2020
                : 17
                : 17
                : 6278
                Affiliations
                Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; medwgy@ 123456163.com (G.W.); zhaoguo006@ 123456126.com (G.Z.); a17334815782@ 123456126.com (X.C.)
                Author notes
                [* ]Correspondence: 10190141@ 123456vip.henu.edu.cn (L.X.); 10190132@ 123456vip.henu.edu.cn (H.W.); Tel.: +86-0371-22892960 (L.X.)
                [†]

                These authors contributed equally to this work and should be considered co-first authors.

                Author information
                https://orcid.org/0000-0003-1477-0842
                Article
                ijerph-17-06278
                10.3390/ijerph17176278
                7503635
                32872324
                f4b4f837-e75d-4aea-876c-7cd63c8aedc9
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 July 2020
                : 26 August 2020
                Categories
                Review

                Public health
                k. pneumoniae,pathogenicity,biofilm,multidrug-resistant
                Public health
                k. pneumoniae, pathogenicity, biofilm, multidrug-resistant

                Comments

                Comment on this article