9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Network Pharmacology and Molecular Docking Study of Yupingfeng Powder in the Treatment of Allergic Diseases

      research-article
      1 , , 1 , 2
      Evidence-based Complementary and Alternative Medicine : eCAM
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To explore the potential mechanisms of Yupingfeng Powder (YPFP) in the treatment of allergic diseases by using network pharmacology and molecular docking technology.

          Methods

          The active components and targets of YPFP were screened by the TCMSP database. The targets associated with atopic dermatitis, asthma, allergic rhinitis, and food allergy were obtained from GeneCards and OMIM databases, respectively. The intersection of the above disease-related targets was identified as allergy-related targets. Then, allergy-related targets and YPFP-related targets were crossed to obtain the potential targets of YPFP for allergy treatment. A protein-protein-interaction (PPI) network and a drug-target-disease topology network were constructed to screen hub targets and key ingredients. Next, GO and KEGG pathway enrichment analyses were performed separately on the potential targets and hub targets to identify the biological processes and signaling pathways involved. Finally, molecular docking was conducted to verify the binding affinity between key ingredients and hub targets.

          Results

          In this study, 45 active ingredients were identified from YPFP, and 48 allergy-related targets were predicted by network pharmacology. IL6, TNF, IL1B, PTGS2, CXCL8, JUN, CCL2, IL10, IFNG, and IL4 were screened as hub targets by the PPI network. However, quercetin, kaempferol, wogonin, formononetin, and 7-O-methylisomucronulatol were identified as key ingredients by the drug-target-disease topological network. GO and KEGG pathway enrichment analysis indicated that the therapeutic effect of YPFP on allergy involved multiple biological processes and signaling pathways, including positive regulation of fever generation, positive regulation of neuroinflammatory response, vascular endothelial growth factor production, negative regulation of cytokine production involved in immune response, positive regulation of mononuclear cell migration, type 2 immune response, and negative regulation of lipid storage. Molecular docking verified that all the key ingredients had good binding affinity with hub targets.

          Conclusion

          This study revealed the key ingredients, hub targets, and potential mechanisms of YPFP antiallergy, and these data can provide some theoretical basis for subsequent allergy treatment and drug development.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          IL-6 in inflammation, immunity, and disease.

          Interleukin 6 (IL-6), promptly and transiently produced in response to infections and tissue injuries, contributes to host defense through the stimulation of acute phase responses, hematopoiesis, and immune reactions. Although its expression is strictly controlled by transcriptional and posttranscriptional mechanisms, dysregulated continual synthesis of IL-6 plays a pathological effect on chronic inflammation and autoimmunity. For this reason, tocilizumab, a humanized anti-IL-6 receptor antibody was developed. Various clinical trials have since shown the exceptional efficacy of tocilizumab, which resulted in its approval for the treatment of rheumatoid arthritis and juvenile idiopathic arthritis. Moreover, tocilizumab is expected to be effective for other intractable immune-mediated diseases. In this context, the mechanism for the continual synthesis of IL-6 needs to be elucidated to facilitate the development of more specific therapeutic approaches and analysis of the pathogenesis of specific diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Traditional Chinese medicine network pharmacology: theory, methodology and application.

            Traditional Chinese medicine (TCM) has a long history of viewing an individual or patient as a system with different statuses, and has accumulated numerous herbal formulae. The holistic philosophy of TCM shares much with the key ideas of emerging network pharmacology and network biology, and meets the requirements of overcoming complex diseases, such as cancer, in a systematic manner. To discover TCM from a systems perspective and at the molecular level, a novel TCM network pharmacology approach was established by updating the research paradigm from the current "one target, one drug" mode to a new "network target, multi-components" mode. Subsequently, a set of TCM network pharmacology methods were created to prioritize disease-associated genes, to predict the target profiles and pharmacological actions of herbal compounds, to reveal drug-gene-disease co-module associations, to screen synergistic multi-compounds from herbal formulae in a high-throughput manner, and to interpret the combinatorial rules and network regulation effects of herbal formulae. The effectiveness of the network-based methods was demonstrated for the discovery of bioactive compounds and for the elucidation of the mechanisms of action of herbal formulae, such as Qing-Luo-Yin and the Liu-Wei-Di-Huang pill. The studies suggest that the TCM network pharmacology approach provides a new research paradigm for translating TCM from an experience-based medicine to an evidence-based medicine system, which will accelerate TCM drug discovery, and also improve current drug discovery strategies. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of immune responses by prostaglandin E2.

              PGE(2), an essential homeostatic factor, is also a key mediator of immunopathology in chronic infections and cancer. The impact of PGE(2) reflects the balance between its cyclooxygenase 2-regulated synthesis and 15-hydroxyprostaglandin dehydrogenase-driven degradation and the pattern of expression of PGE(2) receptors. PGE(2) enhances its own production but suppresses acute inflammatory mediators, resulting in its predominance at late/chronic stages of immunity. PGE(2) supports activation of dendritic cells but suppresses their ability to attract naive, memory, and effector T cells. PGE(2) selectively suppresses effector functions of macrophages and neutrophils and the Th1-, CTL-, and NK cell-mediated type 1 immunity, but it promotes Th2, Th17, and regulatory T cell responses. PGE(2) modulates chemokine production, inhibiting the attraction of proinflammatory cells while enhancing local accumulation of regulatory T cells cells and myeloid-derived suppressor cells. Targeting the production, degradation, and responsiveness to PGE(2) provides tools to modulate the patterns of immunity in a wide range of diseases, from autoimmunity to cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2022
                9 July 2022
                9 July 2022
                : 2022
                : 1323744
                Affiliations
                1Department of Traditional Chinese Medicine, First Clinical Medical College, Jiangsu University, Zhenjiang, China
                2Department of Warm Disease, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
                Author notes

                Academic Editor: Shih-Chao Lin

                Author information
                https://orcid.org/0000-0003-1516-3462
                https://orcid.org/0000-0002-8034-2435
                https://orcid.org/0000-0002-3754-4437
                Article
                10.1155/2022/1323744
                9288288
                35855823
                f4531723-0606-4fab-b8a7-0a4d299041ae
                Copyright © 2022 Minye Qu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 March 2022
                : 22 June 2022
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81904166
                Funded by: Jiangsu Provincial Natural Science Research Project of Higher Education
                Award ID: 20KJB360006
                Funded by: Jiangsu Traditional Chinese Medicine Science and Technology Development Program
                Award ID: QN202010
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article