Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
159
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most RNAs generated by the human genome have no protein-coding ability and are termed non-coding RNAs. Among these include circular RNAs, which include exonic circular RNAs (circRNA), mainly found in the cytoplasm, and intronic RNAs (ciRNA), predominantly detected in the nucleus. The biological functions of circular RNAs remain largely unknown, although ciRNAs have been reported to promote gene transcription, while circRNAs may function as microRNA sponges. We demonstrate that the circular RNA circ-Foxo3 was highly expressed in non-cancer cells and were associated with cell cycle progression. Silencing endogenous circ-Foxo3 promoted cell proliferation. Ectopic expression of circ-Foxo3 repressed cell cycle progression by binding to the cell cycle proteins cyclin-dependent kinase 2 (also known as cell division protein kinase 2 or CDK2) and cyclin-dependent kinase inhibitor 1 (or p21), resulting in the formation of a ternary complex. Normally, CDK2 interacts with cyclin A and cyclin E to facilitate cell cycle entry, while p21works to inhibit these interactions and arrest cell cycle progression. The formation of this circ-Foxo3-p21-CDK2 ternary complex arrested the function of CDK2 and blocked cell cycle progression.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          The emerging roles of forkhead box (Fox) proteins in cancer.

          Forkhead box (Fox) proteins are a superfamily of evolutionarily conserved transcriptional regulators, which control a wide spectrum of biological processes. As a consequence, a loss or gain of Fox function can alter cell fate and promote tumorigenesis as well as cancer progression. Here we discuss the evidence that the deregulation of Fox family transcription factors has a crucial role in the development and progression of cancer, and evaluate the emerging role of Fox proteins as direct and indirect targets for therapeutic intervention, as well as biomarkers for predicting and monitoring treatment responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lost in transcription: p21 repression, mechanisms, and consequences.

            The cyclin-dependent kinase inhibitor p21WAF1/CIP1 is a major player in cell cycle control and it is mainly regulated at the transcriptional level. Whereas induction of p21 predominantly leads to cell cycle arrest, repression of p21 may have a variety of outcomes depending on the context. In this review, we concentrate on transcriptional repression of p21 by cellular and viral factors, and delve in detail into its possible biological implications and its role in cancer. It seems that the major mode of p21 transcriptional repression by negative regulators is the interference with positive transcription factors without direct binding to the p21 promoter. Specifically, the negative factors may either inhibit binding of positive regulators to the promoter or hinder their transcriptional activity. The ability of p21 to inhibit proliferation may contribute to its tumor suppressor function. Because of this, it is not surprising that a number of oncogenes repress p21 to promote cell growth and tumorigenesis. However, p21 is also an inhibitor of apoptosis and p21 repression may also have an anticancer effect. For example, c-Myc and chemical p21 inhibitors, which repress p21, sensitize tumor cells to apoptosis by anticancer drugs. Further identification of factors that repress p21 is likely to contribute to the better understanding of its role in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cyclin A in cell cycle control and cancer.

              Cyclin A is particularly interesting among the cyclin family because it can activate two different cyclin-dependent kinases (CDKs) and functions in both S phase and mitosis. An embryonic form of cyclin A that is only essential for spermatogenesis is also present in some organisms. In S phase, phosphorylation of components of the DNA replication machinery such as CDC6 by cyclin A-CDK is believed to be important for initiation of DNA replication and to restrict the initiation to only once per cell cycle. In mitosis, the precise role of cyclin A is still obscure, but it may contribute to the control of cyclin B stability. Cyclin A starts to accumulate during S phase and is abruptly destroyed before metaphase. The synthesis of cyclin A is mainly controlled at the transcription level, involving E2F and other transcription factors. Removal of cyclin A is carried out by ubiquitin-mediated proteolysis, but whether the same anaphase-promoting complex/cyclosome targeting subunits are used as for cyclin B is debatable. Consistent with its role as a key cell cycle regulator, expression of cyclin A is found to be elevated in a variety of tumors.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                07 April 2016
                09 February 2016
                09 February 2016
                : 44
                : 6
                : 2846-2858
                Affiliations
                [1 ]Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, M4N 3M5, Canada
                [2 ]Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +416 480 5874; Email: byang@ 123456sri.utoronto.ca
                []These authors contributed equally to the paper as first authors.
                Article
                10.1093/nar/gkw027
                4824104
                26861625
                f4148778-8676-4c5e-8307-8c7b9edb6b1a
                © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 11 January 2016
                : 08 January 2016
                : 07 June 2015
                Page count
                Pages: 13
                Categories
                RNA
                Custom metadata
                07 April 2016

                Genetics
                Genetics

                Comments

                Comment on this article