10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell Membrane Coating Nanotechnology

            Nanoparticle-based therapeutic, prevention, and detection modalities have the potential to greatly impact how diseases are diagnosed and managed in the clinic. With the wide range of different nanomaterials available to nanomedicine researchers, the rational design of nanocarriers on an application-specific basis has become increasingly commonplace. In this review, we provide a comprehensive overview on an emerging platform: cell membrane coating nanotechnology. As one of the most fundamental units in biology, a cell carries out a wide range of functions, including its remarkable ability to interface and interact with its surrounding environment. Instead of attempting to replicate such functions via synthetic techniques, researchers are now directly leveraging naturally derived cell membranes as a means of bestowing nanoparticles with enhanced biointerfacing capabilities. This top-down technique is facile, highly generalizable, and has the potential to greatly augment the potency and safety of existing nanocarriers. Further, the introduction of a natural membrane substrate onto the surface of a nanoparticle has enabled additional applications beyond those already associated with the field of nanomedicine. Despite the relative youth of the cell membrane coating technique, there exists an impressive body of literature on the topic, which will be covered in detail in this review. Overall, there is still significant room for development, as researchers continue to refine existing workflows while finding new and exciting applications that can take advantage of this emerging technology. Cell membrane coating is an emerging nanotechnology. By cloaking nanomaterials in a layer of natural cell membrane, which can be derived from a variety of cell types, it is possible to fabricate nanoplatforms with enhanced surface functionality. This can lead to increased nanoparticle performance in complex biological environments, which can benefit applications like drug delivery, imaging, phototherapies, immunotherapies, and detoxification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From Krebs to clinic: glutamine metabolism to cancer therapy.

              The resurgence of research into cancer metabolism has recently broadened interests beyond glucose and the Warburg effect to other nutrients, including glutamine. Because oncogenic alterations of metabolism render cancer cells addicted to nutrients, pathways involved in glycolysis or glutaminolysis could be exploited for therapeutic purposes. In this Review, we provide an updated overview of glutamine metabolism and its involvement in tumorigenesis in vitro and in vivo, and explore the recent potential applications of basic science discoveries in the clinical setting.
                Bookmark

                Author and article information

                Journal
                Nano Research
                Nano Res.
                Springer Science and Business Media LLC
                1998-0124
                1998-0000
                August 2022
                May 24 2022
                August 2022
                : 15
                : 8
                : 7320-7328
                Article
                10.1007/s12274-022-4359-6
                36405982
                f37409e8-b219-400a-ae0c-78df79e01285
                © 2022

                https://www.springer.com/tdm

                https://www.springer.com/tdm

                History

                Comments

                Comment on this article