34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-Resolution Imaging of the Retinal Nerve Fiber Layer in Normal Eyes Using Adaptive Optics Scanning Laser Ophthalmoscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To conduct high-resolution imaging of the retinal nerve fiber layer (RNFL) in normal eyes using adaptive optics scanning laser ophthalmoscopy (AO-SLO).

          Methods

          AO-SLO images were obtained in 20 normal eyes at multiple locations in the posterior polar area and a circular path with a 3–4-mm diameter around the optic disc. For each eye, images focused on the RNFL were recorded and a montage of AO-SLO images was created.

          Results

          AO-SLO images for all eyes showed many hyperreflective bundles in the RNFL. Hyperreflective bundles above or below the fovea were seen in an arch from the temporal periphery on either side of a horizontal dividing line to the optic disc. The dark lines among the hyperreflective bundles were narrower around the optic disc compared with those in the temporal raphe. The hyperreflective bundles corresponded with the direction of the striations on SLO red-free images. The resolution and contrast of the bundles were much higher in AO-SLO images than in red-free fundus photography or SLO red-free images. The mean hyperreflective bundle width around the optic disc had a double-humped shape; the bundles at the temporal and nasal sides of the optic disc were narrower than those above and below the optic disc ( P<0.001). RNFL thickness obtained by optical coherence tomography correlated with the hyperreflective bundle widths on AO-SLO ( P<0.001)

          Conclusions

          AO-SLO revealed hyperreflective bundles and dark lines in the RNFL, believed to be retinal nerve fiber bundles and Müller cell septa. The widths of the nerve fiber bundles appear to be proportional to the RNFL thickness at equivalent distances from the optic disc.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Improvements on Littmann's method of determining the size of retinal features by fundus photography.

          Littmann's formula relating the size of a retinal feature to its measured image size on a telecentric fundus camera film is widely used. It requires only the corneal radius, ametropia, and Littmann's factor q obtained from nomograms or tables. These procedures are here computerized for practitioners' convenience. Basic optical principles are discussed, showing q to be a constant fraction of the theoretical ocular dimension k', the distance from the eye's second principal point to the retina. If the eye's axial length is known, three new methods of determining q become available: (a) simply reducing the axial length by a constant 1.82 mm; (b) constructing a personalized schematic eye, given additional data; (c) ray tracing through this eye to extend calculations to peripheral retinal areas. Results of all these evaluations for 12 subjects of known ocular dimensions are presented for comparison. Method (a), the simplest, is arguably the most reliable. It shows good agreement with Littmann's supplementary procedure when the eye's axial length is known.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons.

            To compare the number of retinal ganglion cells (RGCs) topographically mapped with specific visual field threshold test data in the same eyes among glaucoma patients. Seventeen eyes of 13 persons with well-documented glaucoma histories and Humphrey threshold visual field tests (San Leandro, CA) were obtained from eye banks. RGC number was estimated by histologic counts of retinal sections and by counts of remaining axons in the optic nerves. The locations of the retinal samples corresponded to specific test points in the visual field. The data for glaucoma patients were compared with 17 eyes of 17 persons who were group matched for age, had no ocular history, and had normal eyes by histologic examination. The mean RGC loss for the entire retina averaged 10.2%, indicating that many eyes had early glaucoma damage. RGC body loss averaged 35.7% in eyes with corrected pattern SD probability less than 0.5%. When upper to lower retina RGC counts were compared with their corresponding visual field data within each eye, a 5-dB loss in sensitivity was associated with 25% RGC loss. For individual points that were abnormal at a probability less than 0.5%, the mean RGC loss was 29%. In control eyes, the loss of RGCs with age was estimated as 7205 cells per year in persons between 55 and 95 years of age. In optic nerves from glaucoma subjects, smaller axons were significantly more likely to be present than larger axons (R2 = 0.78, P<0.001). At least 25% to 35% RGC loss is associated with statistical abnormalities in automated visual field testing. In addition, these data corroborate previous findings that RGCs with larger diameter axons preferentially die in glaucoma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adaptive optics scanning laser ophthalmoscopy.

              We present the first scanning laser ophthalmoscope that uses adaptive optics to measure and correct the high order aberrations of the human eye. Adaptive optics increases both lateral and axial resolution, permitting axial sectioning of retinal tissue in vivo. The instrument is used to visualize photoreceptors, nerve fibers and flow of white blood cells in retinal capillaries.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                12 March 2012
                : 7
                : 3
                : e33158
                Affiliations
                [1 ]Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
                [2 ]NIDEK, Gamagori, Japan
                [3 ]Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita, Japan
                University Hospital La Paz, Spain
                Author notes

                Conceived and designed the experiments: KT S. Ooto. Performed the experiments: KT S. Ooto NA NS M. Hanebuchi. Analyzed the data: KT S. Ooto NY. Contributed reagents/materials/analysis tools: S. Oshima NS M. Hanebuchi TI. Wrote the paper: KT S. Ooto M. Hangai NY.

                Article
                PONE-D-11-15647
                10.1371/journal.pone.0033158
                3299751
                22427978
                f3645053-5545-4c06-b231-e2c7f14792a8
                Takayama et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 August 2011
                : 10 February 2012
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Neuroscience
                Medicine
                Anatomy and Physiology
                Ocular System
                Neurology
                Ophthalmology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article