18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dopamine acutely stimulates Na+/H+ exchanger (NHE3) endocytosis via clathrin-coated vesicles: dependence on protein kinase A-mediated NHE3 phosphorylation.

      The Journal of Biological Chemistry
      Amino Acid Sequence, Animals, Cells, Cultured, Clathrin, metabolism, Coated Pits, Cell-Membrane, Cyclic AMP-Dependent Protein Kinases, Dopamine, pharmacology, Endocytosis, drug effects, Humans, Molecular Sequence Data, Phosphorylation, Sequence Homology, Amino Acid, Sodium-Hydrogen Antiporter, chemistry

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dopamine (DA) is a key hormone in mammalian sodium homeostasis. DA induces natriuresis via acute inhibition of the renal proximal tubule apical membrane Na(+)/H(+) exchanger NHE3. We examined the mechanism by which DA inhibits NHE3 in a renal cell line. DA acutely decreases surface NHE3 antigen in dose- and time-dependent fashion without altering total cellular NHE3. Although DA(1) receptor agonist alone decreases surface NHE3, simultaneous DA(2) agonist synergistically enhances the effect of DA(1). Decreased surface NHE3 antigen, caused by stimulation of NHE3 endocytosis, is dependent on intact functioning of the GTPase dynamin and involves increased binding of NHE3 to the adaptor protein AP2. DA-stimulated NHE3 endocytosis can be blocked by pharmacologic or genetic protein kinase A inhibition or by mutation of two protein kinase A target serines (Ser-560 and Ser-613) on NHE3. We conclude that one mechanism by which DA induces natriuresis is via protein kinase A-mediated phosphorylation of proximal tubule NHE3 leading to endocytosis of NHE3 via clathrin-coated vesicles.

          Related collections

          Author and article information

          Comments

          Comment on this article