9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antioxidant Activity of Frozen and Freeze-Dried Drone Brood Homogenate Regarding the Stage of Larval Development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drone brood is a little-known and poorly studied bee product used and valued in the treatment of many diseases, including male infertility and women’s menopausal disorders. The aim of this study was to evaluate the antioxidant activity of drone brood depending on the stage of larval development and the method of preservation. Aqueous and ethanolic homogenate extracts of drone brood were assayed for antioxidant activity (with the DPPH, FRAP, and ABTS methods), polyphenol, and flavonoid content. The extracts’ polyphenolic profiles were compared by the HPTLC method. Drone brood has been shown to be more active in the earlier stages of development (between days 7–11), with a decline in antioxidant activity in the later period (by the 14th day). The freeze-drying process did not cause significant changes in the antioxidant activity of brood preparations converted to dry mass. Based on the higher activity of the aqueous compared to 70% ethanolic extracts, it was shown that the dominant fraction of brood consisted of hydrophilic antioxidants. The results obtained with different methods were highly correlated, excluding those from the ABTS assay. The HPTLC method showed that the polyphenol fraction of drone brood homogenate consisted mainly of phenolic acids and flavonoids. It was shown that drone brood has valuable antioxidant properties that can be compared with royal jelly.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Antioxidant activity applying an improved ABTS radical cation decolorization assay

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Chemistry and Biological Activities of Flavonoids: An Overview

            There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships.

              Flavonoids are a class of secondary plant phenolics with significant antioxidant and chelating properties. In the human diet, they are most concentrated in fruits, vegetables, wines, teas and cocoa. Their cardioprotective effects stem from the ability to inhibit lipid peroxidation, chelate redox-active metals, and attenuate other processes involving reactive oxygen species. Flavonoids occur in foods primarily as glycosides and polymers that are degraded to variable extents in the digestive tract. Although metabolism of these compounds remains elusive, enteric absorption occurs sufficiently to reduce plasma indices of oxidant status. The propensity of a flavonoid to inhibit free-radical mediated events is governed by its chemical structure. Since these compounds are based on the flavan nucleus, the number, positions, and types of substitutions influence radical scavenging and chelating activity. The diversity and multiple mechanisms of flavonoid action, together with the numerous methods of initiation, detection and measurement of oxidative processes in vitro and in vivo offer plausible explanations for existing discrepancies in structure-activity relationships. Despite some inconsistent lines of evidence, several structure-activity relationships are well established in vitro. Multiple hydroxyl groups confer upon the molecule substantial antioxidant, chelating and prooxidant activity. Methoxy groups introduce unfavorable steric effects and increase lipophilicity and membrane partitioning. A double bond and carbonyl function in the heterocycle or polymerization of the nuclear structure increases activity by affording a more stable flavonoid radical through conjugation and electron delocalization. Further investigation of the metabolism of these phytochemicals is justified to extend structure-activity relationships (SAR) to preventive and therapeutic nutritional strategies.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                22 April 2021
                May 2021
                : 10
                : 5
                : 639
                Affiliations
                Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a St., 35-601 Rzeszów, Poland; mmilek@ 123456ur.edu.pl (M.M.); mwesolowska@ 123456ur.edu.pl (M.T.); mdzugan@ 123456ur.edu.pl (M.D.)
                Author notes
                Author information
                https://orcid.org/0000-0002-3954-4940
                https://orcid.org/0000-0001-9312-2506
                https://orcid.org/0000-0003-1601-6296
                Article
                antioxidants-10-00639
                10.3390/antiox10050639
                8143536
                33921973
                f2d9281e-ea9d-47b5-8c4f-859f4b4148bd
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 24 March 2021
                : 20 April 2021
                Categories
                Article

                drone brood,antioxidant activity,hptlc,polyphenols,the stage of development

                Comments

                Comment on this article