13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isokinetic Strength Responses to Season-long Training and Competition in Turkish Elite Soccer Players

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are not enough studies that describe the isokinetic strength of professional soccer players at high angular velocities. The purpose of this study was to evaluate the seasonal changes in isokinetic strength of Turkish professional soccer players (n=14) over the course of a 24-week soccer season. The isokinetic strength of players who underwent usual soccer training and weekly competition throughout the soccer season was assessed by means of the Biodex System 3 dynamometer with the knee attachment. The peak torque of knee extensor and flexor muscles were measured at angular velocities of 60°/s, 300°/s and 500°/s. Players were tested at the beginning and end of the competitive season. While the first- and second-test measurements did not show significant changes at 60°/s and 300°/s angular velocities, at the end of the training period, players’ knee strength changed significantly at 500°/s angular velocities. In addition, the H/Q ratio improved significantly for the dominant as well as non-dominant leg at 500°/s. Significant bilateral strength improvements for knee flexors were also observed at 500°/s. The findings of this study suggest that usual daily soccer training (technical, tactical, power, strength, endurance, flexibility, etc.) and weekly competition might produce changes in knee strength at high angular velocities.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps.

          Four male subjects aged 23-34 years were studied during 60 days of unilateral strength training and 40 days of detraining. Training was carried out four times a week and consisted of six series of ten maximal isokinetic knee extensions at an angular velocity of 2.09 rad.s-1. At the start and at every 20th day of training and detraining, isometric maximal voluntary contraction (MVC), integrated electromyographic activity (iEMG) and quadriceps muscle cross-sectional area (CSA) assessed at seven fractions of femur length (Lf), by nuclear magnetic resonance imaging, were measured on both trained (T) and untrained (UT) legs. Isokinetic torques at 30 degrees before full knee extension were measured before and at the end of training at: 0, 1.05, 2.09, 3.14, 4.19, 5.24 rad.s-1. After 60 days T leg CSA had increased by 8.5% +/- 1.4% (mean +/- SEM, n = 4, p less than 0.001), iEMG by 42.4% +/- 16.5% (p less than 0.01) and MVC by 20.8% +/- 5.4% (p less than 0.01). Changes during detraining had a similar time course to those of training. No changes in UT leg CSA were observed while iEMG and MVC increased by 24.8% +/- 10% (N.S.) and 8.7% +/- 4.3% (N.S.), respectively. The increase in quadriceps muscle CSA was maximal at 2/10 Lf (12.0% +/- 1.5%, p less than 0.01) and minimal, proximally to the knee, at 8/10 Lf (3.5% +/- 1.2%, N.S.). Preferential hypertrophy of the vastus medialis and intermedius muscles compared to those of the rectus femoris and lateralis muscles was observed.(ABSTRACT TRUNCATED AT 250 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Velocity specificity of resistance training.

            D. Sale, D Behm (1993)
            Velocity specificity of resistance training has demonstrated that the greatest strength gains occur at or near the training velocity. There is also evidence that the intent to make a high speed contraction may be the most crucial factor in velocity specificity. The mechanisms underlying the velocity-specific training effect may reside in both neural and muscular components. Muscular adaptations such as hypertrophy may inhibit high velocity strength adaptations due to changes in muscle architecture. However, some studies have reported velocity-specific contractile property adaptations suggesting changes in muscle kinetics. There is evidence to suggest velocity-specific electromyographic (EMG) adaptations with explosive jump training. Other researchers have hypothesised neural adaptations because of a lack of electrically evoked changes in relation to significant voluntary improvements. These neural adaptations may include the selective activation of motor units and/or muscles, especially with high velocity alternating contractions. Although the incidence of motor unit synchronisation increases with training, its contribution to velocity-specific strength gains is unclear. However, increased synchronisation may occur more frequently with the premovement silent period before ballistic contractions. The preprogrammed neural circuitry of ballistic contractions suggests that high velocity training adaptations may involve significant neural adaptations. The unique firing frequency associated with ballistic contractions would suggest possible adaptations in the frequency of motor unit discharge. Although co-contraction of antagonists increases with training and high velocity movement, its contribution is probably related more to joint protection than the velocity-specific training effect.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players.

              Information about the influence of different practice levels on physical characteristics of a large number of soccer players is lacking. Therefore we assessed muscular strength and anaerobic power of elite, subelite and amateur soccer players to clarify what parameters distinguish the top players from the less successful. We tested 95 soccer players from the French first division (elite), second division (subelite), and amateurs and determined the isokinetic strength of the knee extensor and flexor muscles at angular velocities from -120 degrees x s(-1) to 300 degrees x s(-1). Vertical jump, 10 m sprint, 30 m sprint and maximum ball speed during shooting were also measured. The elite players had higher knee flexor torque than the amateurs at all angular velocities (p < 0.05), except at 300 degrees x s(-1). The hamstring/quadriceps ratios proposed with two different methods were significantly lower in the amateur group than in the elite group (p < 0.05), except at 300 degrees x s(-1). Maximum ball speed during shooting and speed over 30 m sprint were not different between elite, subelite, and amateur players while speed over a 10 m sprint was significantly slower in amateur players and faster in the elite group (p < 0.05). Although performance in soccer is not determined only by measurable variables, professional players differ from amateurs in terms of knee flexor muscle strength and short-distance sprinting speed. Based on these findings we conclude that hamstring strength is extremely important in soccer players for joint stabilization during various tasks, notably in eccentric action. Further, short-sprinting performance may mirror actual game situations at high level and could be an important determinant of match-winning actions.
                Bookmark

                Author and article information

                Journal
                J Hum Kinet
                J Hum Kinet
                JHK
                Journal of Human Kinetics
                Akademia Wychowania Fizycznego w Katowicach
                1640-5544
                1899-7562
                March 2012
                03 April 2012
                : 31
                : 159-168
                Affiliations
                [1 ]School of Physical Education and Sports, Celal Bayar University, Manisa, Turkey.
                [2 ]Department of Kinesiology and Sports Studies, Eastern Illinois University, Charleston, IL, USA.
                Author notes
                Corresponding author: Niyazi Eniseler Ph.D., Celal Bayar University, School of Physical Education and Sports, Manisa, Turkey., Phone: +90 236 23 146 45, Fax : +90 236 23 130 01, E-mail: niyazi.eniseler@ 123456bayar.edu.tr

                Authors submitted their contribution of the article to the editorial board.

                Article
                jhk-31-159
                10.2478/v10078-012-0017-5
                3588650
                23487507
                f2c1709a-140a-4051-80f1-6f7d2853be15
                © Editorial Committee of Journal of Human Kinetics

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : March 2012
                Categories
                Research Article
                Section III – Sports Training

                isokinetic strength,h/q ratio,bilateral strength,soccer,seasonal changes

                Comments

                Comment on this article