15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial Resistance to Antimicrobial Agents

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacterial pathogens as causative agents of infection constitute an alarming concern in the public health sector. In particular, bacteria with resistance to multiple antimicrobial agents can confound chemotherapeutic efficacy towards infectious diseases. Multidrug-resistant bacteria harbor various molecular and cellular mechanisms for antimicrobial resistance. These antimicrobial resistance mechanisms include active antimicrobial efflux, reduced drug entry into cells of pathogens, enzymatic metabolism of antimicrobial agents to inactive products, biofilm formation, altered drug targets, and protection of antimicrobial targets. These microbial systems represent suitable focuses for investigation to establish the means for their circumvention and to reestablish therapeutic effectiveness. This review briefly summarizes the various antimicrobial resistance mechanisms that are harbored within infectious bacteria.

          Related collections

          Most cited references191

          • Record: found
          • Abstract: found
          • Article: not found

          The Protein Data Bank.

          The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis

            The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extended-Spectrum β-Lactamases: a Clinical Update

              Extended-spectrum β-lactamases (ESBLs) are a rapidly evolving group of β-lactamases which share the ability to hydrolyze third-generation cephalosporins and aztreonam yet are inhibited by clavulanic acid. Typically, they derive from genes for TEM-1, TEM-2, or SHV-1 by mutations that alter the amino acid configuration around the active site of these β-lactamases. This extends the spectrum of β-lactam antibiotics susceptible to hydrolysis by these enzymes. An increasing number of ESBLs not of TEM or SHV lineage have recently been described. The presence of ESBLs carries tremendous clinical significance. The ESBLs are frequently plasmid encoded. Plasmids responsible for ESBL production frequently carry genes encoding resistance to other drug classes (for example, aminoglycosides). Therefore, antibiotic options in the treatment of ESBL-producing organisms are extremely limited. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBL-producing organisms may appear susceptible to some extended-spectrum cephalosporins. However, treatment with such antibiotics has been associated with high failure rates. There is substantial debate as to the optimal method to prevent this occurrence. It has been proposed that cephalosporin breakpoints for the Enterobacteriaceae should be altered so that the need for ESBL detection would be obviated. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards) provide guidelines for the detection of ESBLs in klebsiellae and Escherichia coli . In common to all ESBL detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic resistance mechanisms in the face of the introduction of new antimicrobial agents.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Antibiotics (Basel)
                Antibiotics (Basel)
                antibiotics
                Antibiotics
                MDPI
                2079-6382
                17 May 2021
                May 2021
                : 10
                : 5
                : 593
                Affiliations
                [1 ]Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA; Manisha.Ojha@ 123456enmu.edu (M.O.); Nicholas.Wenzel@ 123456enmu.edu (N.W.); Leslie.Sanford@ 123456enmu.edu (L.M.S.); Alberto.J.Hernandez@ 123456enmu.edu (A.J.H.)
                [2 ]Post-Harvest Technology, ICAR-Central Institute of Fisheries Education, Seven Bungalows, Andheri (W), Mumbai 400061, India; jerusha.phtpa702@ 123456cife.edu.in (J.S.); manjusha@ 123456cife.edu.in (M.L.); sanathkumar@ 123456cife.edu.in (S.H.K.)
                [3 ]CSIR-National Institute of Oceanography, Regional Centre, Kochi 682018, India; parvathi@ 123456nio.org
                Author notes
                Author information
                https://orcid.org/0000-0001-8667-7853
                https://orcid.org/0000-0001-9434-3140
                https://orcid.org/0000-0001-6916-2671
                https://orcid.org/0000-0003-0223-9069
                Article
                antibiotics-10-00593
                10.3390/antibiotics10050593
                8157006
                34067579
                f29b2afd-3ee3-4551-8c06-6613edbd3874
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 22 April 2021
                : 14 May 2021
                Categories
                Review

                bacteria,antimicrobial resistance,infection,pathogenesis,multidrug resistance

                Comments

                Comment on this article