85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Experimental discovery of Weyl semimetal TaAs

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Weyl semimetals are a class of materials that can be regarded as three-dimensional analogs of graphene breaking time reversal or inversion symmetry. Electrons in a Weyl semimetal behave as Weyl fermions, which have many exotic properties, such as chiral anomaly and magnetic monopoles in the crystal momentum space. The surface state of a Weyl semimetal displays pairs of entangled Fermi arcs at two opposite surfaces. However, the existence of Weyl semimetals has not yet been proved experimentally. Here we report the experimental realization of a Weyl semimetal in TaAs by observing Fermi arcs formed by its surface states using angle-resolved photoemission spectroscopy. Our first-principles calculations, matching remarkably well with the experimental results, further confirm that TaAs is a Weyl semimetal.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Weyl semimetal phase in non-centrosymmetric transition metal monophosphides

          Based on first principle calculations, we show that a family of nonmagnetic materials including TaAs, TaP, NbAs and NbP are Weyl semimetal (WSM) without inversion center. We find twelve pairs of Weyl points in the whole Brillouin zone (BZ) for each of them. In the absence of spin-orbit coupling (SOC), band inversions in mirror invariant planes lead to gapless nodal rings in the energy-momentum dispersion. The strong SOC in these materials then opens full gaps in the mirror planes, generating nonzero mirror Chern numbers and Weyl points off the mirror planes. The resulting surface state Fermi arc structures on both (001) and (100) surfaces are also obtained and show interesting shapes, pointing to fascinating playgrounds for future experimental studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Recent developments in transport phenomena in Weyl semimetals

            The last decade has witnessed great advancements in the science and engineering of systems with unconventional band structures, seeded by studies of graphene and topological insulators. While the band structure of graphene simulates massless relativistic electrons in two dimensions, topological insulators have bands that wind non-trivially over momentum space in a certain abstract sense. Over the last couple of years, enthusiasm has been burgeoning in another unconventional and topological (although, not quite in the same sense as topological insulators) phase -- the Weyl Semimetal. In this phase, electrons mimic Weyl fermions that are well-known in high-energy physics, and inherit many of their properties, including an apparent violation of charge conservation known as the Chiral Anomaly. In this review, we recap some of the unusual transport properties of Weyl semimetals discussed in the literature so far, focusing on signatures whose roots lie in the anomaly. We also mention several proposed realizations of this phase in condensed matter systems, since they were what arguably precipitated activity on Weyl semimetals in the first place.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Observation of a topological 3D Dirac semimetal phase in high-mobility Cd3As2

              , , (2015)
              Experimental identification of three-dimensional (3D) Dirac semimetals in solid state systems is critical for realizing exotic topological phenomena and quantum transport such as the Weyl phases, high temperature linear quantum magnetoresistance and topological magnetic phases. Using high resolution angle-resolved photoemission spectroscopy, we performed systematic electronic structure studies on well-known compound Cd3As2. For the first time, we observe a highly linear bulk Dirac cone located at the Brillouin zone center projected onto the (001) surface which is consistent with a 3D Dirac semimetal phase in Cd3As2. Remarkably, an unusually high Dirac Fermion velocity up to 10.2 \textrm{\AA}{\cdot}$eV (1.5 \times 10^{6} ms^-1) is seen in samples where the mobility far exceeds 40,000 cm^2/V.s suggesting that Cd3As2 can be a promising candidate as a hypercone analog of graphene in many device-applications which can also incorporate topological quantum phenomena in a large gap setting. Our experimental identification of this novel topological 3D Dirac semimetal phase, distinct from a 3D topological insulator phase discovered previously, paves the way for exploring higher dimensional relativistic physics in bulk transport and for realizing novel Fermionic matter such as a Fermi arc nodal metal.
                Bookmark

                Author and article information

                Journal
                2015-02-16
                2015-08-03
                Article
                10.1103/PhysRevX.5.031013
                1502.04684
                f277c601-acd9-4afb-9901-9163e0be5f7e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. X 5, 031013 (2015)
                14 pages, 4 figures, see also theoretical paper on TaAs arXiv:1501.00060
                cond-mat.mtrl-sci cond-mat.mes-hall

                Condensed matter,Nanophysics
                Condensed matter, Nanophysics

                Comments

                Comment on this article