3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Elongation factor SII-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein.

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In eukaryotes the genetic material is contained within a coiled, protein-coated structure known as chromatin. RNA polymerases must recognize specific nucleoprotein assemblies and maintain contact with the underlying DNA duplex for many thousands of base pairs. Template-bound lac operon repressor from Escherichia coli arrests RNA polymerase II in vitro and in vivo [Kuhn, A., Bartsch, I. & Grummt, I. (1990) Nature (London) 344, 559-562; Deuschele, U., Hipskind, R. A. & Bujard, H. (1990) Science 248, 480-483]. We show that in a reconstituted transcription system, elongation factor SII enables RNA polymerase II to proceed through this blockage at high efficiency. lac repressor-arrested elongation complexes display an SII-activated transcript cleavage reaction, an activity associated with transcriptional read-through of a previously characterized region of bent DNA. This demonstrates factor-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein. Nascent transcript cleavage may be a general mechanism by which RNA polymerase II can bypass many transcriptional impediments.

          Related collections

          Author and article information

          Journal
          Proc. Natl. Acad. Sci. U.S.A.
          Proceedings of the National Academy of Sciences of the United States of America
          0027-8424
          0027-8424
          Mar 1 1993
          : 90
          : 5
          Affiliations
          [1 ] Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.
          Article
          45991
          8446609
          f1ed5531-660a-4ad9-b3ec-79de6e22f869
          History

          Comments

          Comment on this article