11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      T-cell Acute Lymphoblastic Leukemia: A Roadmap to Targeted Therapies

      , , , ,
      Blood Cancer Discovery
      American Association for Cancer Research (AACR)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          Selective inhibition of BET bromodomains

          Epigenetic proteins are intently pursued targets in ligand discovery. To date, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic “writers” and “erasers”. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) which binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity toward a subset of human bromodomains is explained by co-crystal structures with BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific anti-proliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof of concept for targeting protein-protein interactions of epigenetic “readers” and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges

            Autologous chimeric antigen receptor (CAR) T cells have changed the therapeutic landscape in haematological malignancies. Nevertheless, the use of allogeneic CAR T cells from donors has many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches for patient treatment, possible standardization of the CAR-T cell product, time for multiple cell modifications, redosing or combination of CAR T cells directed against different targets, and decreased cost using an industrialized process. However, allogeneic CAR T cells may cause life-threatening graft-versus-host disease and may be rapidly eliminated by the host immune system. The development of next-generation allogeneic CAR T cells to address these issues is an active area of research. In this Review, we analyse the different sources of T cells for optimal allogeneic CAR-T cell therapy and describe the different technological approaches, mainly based on gene editing, to produce allogeneic CAR T cells with limited potential for graft-versus-host disease. These improved allogeneic CAR-T cell products will pave the way for further breakthroughs in the treatment of cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma.

              Daratumumab targets CD38-expressing myeloma cells through a variety of immune-mediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with crosslinking. These mechanisms may also target nonplasma cells that express CD38, which prompted evaluation of daratumumab's effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from 2 daratumumab monotherapy studies were analyzed before and during therapy and at relapse. Regulatory B cells and myeloid-derived suppressor cells, previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was identified. These Tregs were more immunosuppressive in vitro than CD38-negative Tregs and were reduced in daratumumab-treated patients. In parallel, daratumumab induced robust increases in helper and cytotoxic T-cell absolute counts. In PB and BM, daratumumab induced significant increases in CD8(+):CD4(+) and CD8(+):Treg ratios, and increased memory T cells while decreasing naïve T cells. The majority of patients demonstrated these broad T-cell changes, although patients with a partial response or better showed greater maximum effector and helper T-cell increases, elevated antiviral and alloreactive functional responses, and significantly greater increases in T-cell clonality as measured by T-cell receptor (TCR) sequencing. Increased TCR clonality positively correlated with increased CD8(+) PB T-cell counts. Depletion of CD38(+) immunosuppressive cells, which is associated with an increase in T-helper cells, cytotoxic T cells, T-cell functional response, and TCR clonality, represents possible additional mechanisms of action for daratumumab and deserves further exploration.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Blood Cancer Discovery
                Blood Cancer Discov
                American Association for Cancer Research (AACR)
                2643-3230
                2643-3249
                January 13 2021
                January 2021
                January 2021
                November 24 2020
                : 2
                : 1
                : 19-31
                Article
                10.1158/2643-3230.BCD-20-0093
                34661151
                f1e4fe35-275c-4040-8ccd-83bd72d88713
                © 2020
                History

                Comments

                Comment on this article