Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
112
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autologous chimeric antigen receptor (CAR) T cells have changed the therapeutic landscape in haematological malignancies. Nevertheless, the use of allogeneic CAR T cells from donors has many potential advantages over autologous approaches, such as the immediate availability of cryopreserved batches for patient treatment, possible standardization of the CAR-T cell product, time for multiple cell modifications, redosing or combination of CAR T cells directed against different targets, and decreased cost using an industrialized process. However, allogeneic CAR T cells may cause life-threatening graft-versus-host disease and may be rapidly eliminated by the host immune system. The development of next-generation allogeneic CAR T cells to address these issues is an active area of research. In this Review, we analyse the different sources of T cells for optimal allogeneic CAR-T cell therapy and describe the different technological approaches, mainly based on gene editing, to produce allogeneic CAR T cells with limited potential for graft-versus-host disease. These improved allogeneic CAR-T cell products will pave the way for further breakthroughs in the treatment of cancer.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting

          TALENs are important new tools for genome engineering. Fusions of transcription activator-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and cleave DNA in pairs. Binding specificity is determined by customizable arrays of polymorphic amino acid repeats in the TAL effectors. We present a method and reagents for efficiently assembling TALEN constructs with custom repeat arrays. We also describe design guidelines based on naturally occurring TAL effectors and their binding sites. Using software that applies these guidelines, in nine genes from plants, animals and protists, we found candidate cleavage sites on average every 35 bp. Each of 15 sites selected from this set was cleaved in a yeast-based assay with TALEN pairs constructed with our reagents. We used two of the TALEN pairs to mutate HPRT1 in human cells and ADH1 in Arabidopsis thaliana protoplasts. Our reagents include a plasmid construct for making custom TAL effectors and one for TAL effector fusions to additional proteins of interest. Using the former, we constructed de novo a functional analog of AvrHah1 of Xanthomonas gardneri. The complete plasmid set is available through the non-profit repository AddGene and a web-based version of our software is freely accessible online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD22-CAR T Cells Induce Remissions in CD19-CAR Naïve and Resistant B-ALL

            Chimeric antigen receptor (CAR) T-cells targeting CD19 mediate potent effects in relapsed/refractory pre-B cell acute lymphoblastic leukemia (B-ALL) but antigen loss is a frequent cause of resistance to CD19-targeted immunotherapy. CD22 is also expressed on most B-ALL and usually retained following CD19 loss. We report results from a phase I trial testing a novel CD22-CAR in twenty-one children and adults, including 17 previously treated with CD19-directed immunotherapy. Dose dependent anti-leukemic activity was observed with complete remission in 73% (11/15) of patients receiving ≥ 1 × 106 CD22-CART cells/kg, including 5/5 patients with CD19dim/neg B-ALL. Median remission duration was 6 months. Relapses were associated with diminished CD22 site density that likely permitted escape from killing by CD22-CART cells. These results are the first to eastablish the clinical activity of a CD22-CAR in pre-B cell ALL, including in leukemia resistant to anti-CD19 immunotherapy, demonstrating comparable potency to CD19-CART at biologically active doses in B-ALL. They also highlight the critical role played by antigen density in regulating CAR function. (Funded by NCI Intramural Research Program)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              T Cell Dysfunction in Cancer.

              Therapeutic reinvigoration of tumor-specific T cells has greatly improved clinical outcome in cancer. Nevertheless, many patients still do not achieve durable benefit. Recent evidence from studies in murine and human cancer suggest that intratumoral T cells display a broad spectrum of (dys-)functional states, shaped by the multifaceted suppressive signals that occur within the tumor microenvironment. Here we discuss the current understanding of T cell dysfunction in cancer, the value of novel technologies to dissect such dysfunction at the single cell level, and how our emerging understanding of T cell dysfunction may be utilized to develop personalized strategies to restore antitumor immunity.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Drug Discovery
                Nat Rev Drug Discov
                Springer Science and Business Media LLC
                1474-1776
                1474-1784
                January 3 2020
                Article
                10.1038/s41573-019-0051-2
                31900462
                c7343deb-627b-4028-aa1e-c8c68e500512
                © 2020

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content4,906

                Cited by476

                Most referenced authors2,674