3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Simulation of artificial intelligence robots in dance action recognition and interaction process based on machine vision

      Entertainment Computing
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Flood Prediction Using Machine Learning Models: Literature Review

          Floods are among the most destructive natural disasters, which are highly complex to model. The research on the advancement of flood prediction models contributed to risk reduction, policy suggestion, minimization of the loss of human life, and reduction of the property damage associated with floods. To mimic the complex mathematical expressions of physical processes of floods, during the past two decades, machine learning (ML) methods contributed highly in the advancement of prediction systems providing better performance and cost-effective solutions. Due to the vast benefits and potential of ML, its popularity dramatically increased among hydrologists. Researchers through introducing novel ML methods and hybridizing of the existing ones aim at discovering more accurate and efficient prediction models. The main contribution of this paper is to demonstrate the state of the art of ML models in flood prediction and to give insight into the most suitable models. In this paper, the literature where ML models were benchmarked through a qualitative analysis of robustness, accuracy, effectiveness, and speed are particularly investigated to provide an extensive overview on the various ML algorithms used in the field. The performance comparison of ML models presents an in-depth understanding of the different techniques within the framework of a comprehensive evaluation and discussion. As a result, this paper introduces the most promising prediction methods for both long-term and short-term floods. Furthermore, the major trends in improving the quality of the flood prediction models are investigated. Among them, hybridization, data decomposition, algorithm ensemble, and model optimization are reported as the most effective strategies for the improvement of ML methods. This survey can be used as a guideline for hydrologists as well as climate scientists in choosing the proper ML method according to the prediction task.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Supervised Machine Learning Algorithms: Classification and Comparison

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Application of Medical Artificial Intelligence Technology in Rural Areas of Developing Countries

              Abstract Background: Artificial intelligence (AI) is a rapidly developing computer technology that has begun to be widely used in the medical field to improve the professional level and efficiency of clinical work, in addition to avoiding medical errors. In developing countries, the inequality between urban and rural health services is a serious problem, of which the shortage of qualified healthcare providers is the major cause of the unavailability and low quality of healthcare in rural areas. Some studies have shown that the application of computer-assisted or AI medical techniques could improve healthcare outcomes in rural areas of developing countries. Therefore, the development of suitable medical AI technology for rural areas is worth discussing and probing. Methods: This article reviews and discusses the literature concerning the prospects of medical AI technology, the inequity of healthcare, and the application of computer-assisted or AI medical techniques in rural areas of developing countries. Results: Medical AI technology not only could improve physicians' efficiency and quality of medical services, but other health workers could also be trained to use this technique to compensate for the lack of physicians, thereby improving the availability of healthcare access and medical service quality. This article proposes a multilevel medical AI service network, including a frontline medical AI system (basic level), regional medical AI support centers (middle levels), and a national medical AI development center (top level). Conclusion: The promotion of medical AI technology in rural areas of developing countries might be one means of alleviating the inequality between urban and rural health services. The establishment of a multilevel medical AI service network system may be a solution.
                Bookmark

                Author and article information

                Journal
                Entertainment Computing
                Entertainment Computing
                Elsevier BV
                18759521
                January 2025
                January 2025
                : 52
                : 100773
                Article
                10.1016/j.entcom.2024.100773
                f1cd6768-f2e4-432d-8849-326044d1ec6e
                © 2025

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/legal/tdmrep-license

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article