8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      miR-29c-3p regulates TET2 expression and inhibits autophagy process in Parkinson's disease models.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autophagy in dopamine (DA) neurons is concerned to be associated with Parkinson's disease (PD), but the detailed mechanism remains unknown. Herein, we aimed to investigate the function of microRNA (miR)-29c-3p in autophagy in PD models. Intraperitoneal injection of MPTP (20 mg/kg) was given to C57BL/6 mice to establish PD mouse model. SH-SY5Y cells were treated with MPP+ (1 mmol/L) to establish in vitro PD model. The results indicated that in the substantia nigra pars compacta (SNpc) DA neurons of PD mice, autophagy was activated accompanied by down-regulated miR-29c-3p and up-regulated ten-eleven translocation 2 (TET2) expression. Up-regulation of miR-29c-3p inhibited TET2 expression and SNpc (including DA neurons) autophagy in PD mice. In vitro PD model confirmed that MPP+ treatment markedly down-regulated miR-29c-3p expression and up-regulated TET2 expression in SH-SY5Y cells in a dose/time-dependent manner. Moreover, miR-29c-3p up-regulation also inhibited autophagy and TET2 expression in vitro. Additionally, TET2 was proved to be targeted and down-regulated by miR-29c-3p. TET2 knockdown inhibited MPP+ -induced autophagy, whereas TET2 over-expression reversed the effects of miR-29c-3p over-expression on SH-SY5Y cell autophagy. Overall, miR-29c-3p over-expression inhibits autophagy in PD models, which may be mediated by TET2. Our finding may provide new insights for regulating autophagy to improve PD progression.

          Related collections

          Author and article information

          Journal
          Genes Cells
          Genes to cells : devoted to molecular & cellular mechanisms
          Wiley
          1365-2443
          1356-9597
          Sep 2021
          : 26
          : 9
          Affiliations
          [1 ] Department of Geriatric Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
          Article
          10.1111/gtc.12877
          34086379
          f1a06d3b-635d-42c6-8006-51af5fd01479
          History

          Parkinson disease,TET2,autophagy,dopaminergic neuron,microRNA-29c-3p

          Comments

          Comment on this article