121
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential developmental neurotoxicity of pesticides used in Europe

      review-article
      1 , , 1 , 1 , 2
      Environmental Health
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pesticides used in agriculture are designed to protect crops against unwanted species, such as weeds, insects, and fungus. Many compounds target the nervous system of insect pests. Because of the similarity in brain biochemistry, such pesticides may also be neurotoxic to humans. Concerns have been raised that the developing brain may be particularly vulnerable to adverse effects of neurotoxic pesticides. Current requirements for safety testing do not include developmental neurotoxicity. We therefore undertook a systematic evaluation of published evidence on neurotoxicity of pesticides in current use, with specific emphasis on risks during early development. Epidemiologic studies show associations with neurodevelopmental deficits, but mainly deal with mixed exposures to pesticides. Laboratory experimental studies using model compounds suggest that many pesticides currently used in Europe – including organophosphates, carbamates, pyrethroids, ethylenebisdithiocarbamates, and chlorophenoxy herbicides – can cause neurodevelopmental toxicity. Adverse effects on brain development can be severe and irreversible. Prevention should therefore be a public health priority. The occurrence of residues in food and other types of human exposures should be prevented with regard to the pesticide groups that are known to be neurotoxic. For other substances, given their widespread use and the unique vulnerability of the developing brain, the general lack of data on developmental neurotoxicity calls for investment in targeted research. While awaiting more definite evidence, existing uncertainties should be considered in light of the need for precautionary action to protect brain development.

          Related collections

          Most cited references245

          • Record: found
          • Abstract: found
          • Article: not found

          Organophosphate Pesticide Exposure and Neurodevelopment in Young Mexican-American Children

          Background Organophosphate (OP) pesticides are widely used in agriculture and homes. Animal studies suggest that even moderate doses are neurodevelopmental toxicants, but there are few studies in humans. Objectives We investigated the relationship of prenatal and child OP urinary metabolite levels with children’s neurodevelopment. Methods Participating children were from a longitudinal birth cohort of primarily Latino farm-worker families in California. We measured six nonspecific dialkylphosphate (DAP) metabolites in maternal and child urine as well as metabolites specific to malathion (MDA) and chlorpyrifos (TCPy) in maternal urine. We examined their association with children’s performance at 6 (n = 396), 12 (n = 395), and 24 (n = 372) months of age on the Bayley Scales of Infant Development [Mental Development (MDI) and Psychomotor Development (PDI) Indices] and mother’s report on the Child Behavior Checklist (CBCL) (n = 356). Results Generally, pregnancy DAP levels were negatively associated with MDI, but child measures were positively associated. At 24 months of age, these associations reached statistical significance [per 10-fold increase in prenatal DAPs: β = −3.5 points; 95% confidence interval (CI), −6.6 to −0.5; child DAPs: β = 2.4 points; 95% CI, 0.5 to 4.2]. Neither prenatal nor child DAPs were associated with PDI or CBCL attention problems, but both prenatal and postnatal DAPs were associated with risk of pervasive developmental disorder [per 10-fold increase in prenatal DAPs: odds ratio (OR) = 2.3, p = 0.05; child DAPs OR = 1.7, p = 0.04]. MDA and TCPy were not associated with any outcome. Conclusions We report adverse associations of prenatal DAPs with mental development and pervasive developmental problems at 24 months of age. Results should be interpreted with caution given the observed positive relationship with postnatal DAPs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children.

            The purpose of this study was to investigate the impact of prenatal exposure to chlorpyrifos on 3-year neurodevelopment and behavior in a sample of inner-city minority children. As part of an ongoing prospective cohort study in an inner-city minority population, neurotoxicant effects of prenatal exposure to chlorpyrifos were evaluated in 254 children through the first 3 years of life. This report examined cognitive and motor development at 12, 24, and 36 months (measured with the Bayley Scales of Infant Development II) and child behavior at 36 months (measured with the Child Behavior Checklist) as a function of chlorpyrifos levels in umbilical cord plasma. Highly exposed children (chlorpyrifos levels of >6.17 pg/g plasma) scored, on average, 6.5 points lower on the Bayley Psychomotor Development Index and 3.3 points lower on the Bayley Mental Development Index at 3 years of age compared with those with lower levels of exposure. Children exposed to higher, compared with lower, chlorpyrifos levels were also significantly more likely to experience Psychomotor Development Index and Mental Development Index delays, attention problems, attention-deficit/hyperactivity disorder problems, and pervasive developmental disorder problems at 3 years of age. The adjusted mean 36-month Psychomotor Development Index and Mental Development Index scores of the highly and lower exposed groups differed by only 7.1 and 3.0 points, respectively, but the proportion of delayed children in the high-exposure group, compared with the low-exposure group, was 5 times greater for the Psychomotor Development Index and 2.4 times greater for the Mental Development Index, increasing the number of children possibly needing early intervention services.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the Technical Consultation.

                Bookmark

                Author and article information

                Journal
                Environ Health
                Environmental Health
                BioMed Central
                1476-069X
                2008
                22 October 2008
                : 7
                : 50
                Affiliations
                [1 ]Department of Environmental Medicine, University of Southern Denmark, Winslowparken 17, 5000 Odense, Denmark
                [2 ]Department of Environmental Health, Harvard School of Public Health, Landmark Building 3E-110, 401 Park Drive, Boston, MA 02215, USA
                Article
                1476-069X-7-50
                10.1186/1476-069X-7-50
                2577708
                18945337
                f0d9bd09-65dd-42cc-a8aa-a2d565bc3a13
                Copyright © 2008 Bjørling-Poulsen et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 August 2008
                : 22 October 2008
                Categories
                Review

                Public health
                Public health

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content333

                Cited by80

                Most referenced authors1,460