11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      lncRNA GAS5 promotes pyroptosis in COPD by functioning as a ceRNA to regulate the miR-223-3p/NLRP3 axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic obstructive pulmonary disease (COPD) is characterized by irreversible and progressive airflow limitation and encompasses a spectrum of diseases, including chronic obstructive bronchitis and emphysema. Pyroptosis is a unique form of inflammatory cell death mediated by the activation of caspase-1 and inflammasomes. The long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) is a well-documented tumor suppressor, which is associated with cell proliferation and death in various diseases. The aim of the present study was to evaluate whether lncRNA GAS5 is associated with the pyroptosis in COPD. To create a COPD cell model, MRC-5 cells were treated with 10 µg/ml lipopolysaccharide (LPS) for 48 h. Then the level of pro-caspase 1, caspase 1, IL-1β, IL-18, NLRP3 and cleaved gasdermin D (GSDMD) was examined by western blotting. GAS5 mRNA level was detected by qualitative PCR following LPS treatment in MRC-5 cells. Subsequently, IL-2, IL-6, IL-10 and TNF-α in MRC-5 cells was measured by ELISA. Then the proliferation ability of MRC-5 cells was detected by CCK-8. Cell death was detected by TUNEL assay. LDH release was measured using an LDH Cytotoxicity Assay kit. The Magna RIP kit was used to validate the interaction between GAS5 and miR-223-3p. The present study revealed that increased expression levels of caspase-1, IL-1β, IL-18 and cleaved GSDMD were observed in LPS-treated MRC-5 cells, indicating that pyroptosis is involved in COPD progression. Additionally, LPS induced the increase in GAS5 mRNA expression levels and the release of inflammatory factors (IL-2, IL-6, IL-10 and TNF-α), suggesting that GAS5 is implicated in pyroptosis in COPD. Furthermore, upregulation of GAS5 promoted cell death and inhibited proliferation in the MRC-5 cell line. Additionally, increased GAS5 expression significantly promoted the production of caspase-1, IL-1β, IL-18, cleaved GSDMD and NLR pyrin domain containing protein 3 (NLRP3). A dual-luciferase assay demonstrated that GAS5 could directly bind to microRNA-223-3p (miR-223-3p), and NLRP3 is a direct target of miR-223-3p. Furthermore, GAS5 reduced the expression levels of miR-223-3p, while it increased the expression levels of NLRP3. The present study concluded that lncRNA GAS5 promoted pyroptosis in COPD by targeting the miR-223-3p/NLRP3 axis, implying that GAS5 could be a potential target for COPD.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death.

            Pyroptosis was long regarded as caspase-1-mediated monocyte death in response to certain bacterial insults. Caspase-1 is activated upon various infectious and immunological challenges through different inflammasomes. The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific. Recent studies identified the pyroptosis executioner, gasdermin D (GSDMD), a substrate of both caspase-1 and caspase-11/4/5. GSDMD represents a large gasdermin family bearing a novel membrane pore-forming activity. Thus, pyroptosis is redefined as gasdermin-mediated programmed necrosis. Gasdermins are associated with various genetic diseases, but their cellular function and mechanism of activation (except for GSDMD) are unknown. The gasdermin family suggests a new area of research on pyroptosis function in immunity, disease, and beyond.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long Noncoding RNAs in Cancer Pathways.

              Genome-wide cancer mutation analyses are revealing an extensive landscape of functional mutations within the noncoding genome, with profound effects on the expression of long noncoding RNAs (lncRNAs). While the exquisite regulation of lncRNA transcription can provide signals of malignant transformation, we now understand that lncRNAs drive many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein, and RNA. Recent advancements in surveying lncRNA molecular mechanisms are now providing the tools to functionally annotate these cancer-associated transcripts, making these molecules attractive targets for therapeutic intervention in the fight against cancer.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                July 2022
                13 May 2022
                13 May 2022
                : 26
                : 1
                : 219
                Affiliations
                [1 ]Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
                [2 ]Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
                [3 ]Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
                Author notes
                Correspondence to: Professor Yipeng Ding, Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 19 Xiuhua Road, Haikou, Hainan 570311, P.R. China, E-mail: dyp2507@ 123456hainmc.edu.cn
                Dr Yongxing Chen, Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 19 Xiuhua Road, Haikou, Hainan 570311, P.R. China, E-mail: chenyongxing1969@ 123456163.com
                [*]

                Contributed equally

                Article
                MMR-26-01-12735
                10.3892/mmr.2022.12735
                9175270
                35583006
                f01f6260-cbaa-4f61-9166-43672001590f
                Copyright: © Mo et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 20 August 2021
                : 16 March 2022
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81660013
                Award ID: 81860015
                This work was supported by the National Natural Science Foundation of China (grant nos. 81660013 and 81860015).
                Categories
                Articles

                chronic obstructive pulmonary disease,human lung fibroblast cell line,pyroptosis,microrna-223-3p,nlr family pyrin domain containing 3

                Comments

                Comment on this article