24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytokine-Induced Modulation of Colorectal Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emergence of novel immunomodulatory cancer therapies over the last decade, above all immune checkpoint blockade, has significantly advanced tumor treatment. For colorectal cancer (CRC), a novel scoring system based on the immune cell infiltration in tumors has greatly improved disease prognostic evaluation and guidance to more specific therapy. These findings underline the relevance of tumor immunology in the future handling and therapeutic approach of malignant disease. Inflammation can either promote or suppress CRC pathogenesis and inflammatory mediators, mainly cytokines, critically determine the pro- or anti-tumorigenic signals within the tumor environment. Here, we review the current knowledge on the cytokines known to be critically involved in CRC development and illustrate their mechanisms of action. We also highlight similarities and differences between CRC patients and murine models of CRC and point out cytokines with an ambivalent role for intestinal cancer. We also identify some of the future challenges in the field that should be addressed for the development of more effective immunomodulatory therapies.

          Related collections

          Most cited references205

          • Record: found
          • Abstract: found
          • Article: not found

          The inhibitory cytokine IL-35 contributes to regulatory T-cell function.

          Regulatory T (T(reg)) cells are a critical sub-population of CD4+ T cells that are essential for maintaining self tolerance and preventing autoimmunity, for limiting chronic inflammatory diseases, such as asthma and inflammatory bowel disease, and for regulating homeostatic lymphocyte expansion. However, they also suppress natural immune responses to parasites and viruses as well as anti-tumour immunity induced by therapeutic vaccines. Although the manipulation of T(reg) function is an important goal of immunotherapy, the molecules that mediate their suppressive activity remain largely unknown. Here we demonstrate that Epstein-Barr-virus-induced gene 3 (Ebi3, which encodes IL-27beta) and interleukin-12 alpha (Il12a, which encodes IL-12alpha/p35) are highly expressed by mouse Foxp3+ (forkhead box P3) T(reg) cells but not by resting or activated effector CD4+ T (T(eff)) cells, and that an Ebi3-IL-12alpha heterodimer is constitutively secreted by T(reg) but not T(eff) cells. Both Ebi3 and Il12a messenger RNA are markedly upregulated in T(reg) cells co-cultured with T(eff) cells, thereby boosting Ebi3 and IL-12alpha production in trans. T(reg)-cell restriction of this cytokine occurs because Ebi3 is a downstream target of Foxp3, a transcription factor that is required for T(reg)-cell development and function. Ebi3-/- and Il12a-/- T(reg) cells have significantly reduced regulatory activity in vitro and fail to control homeostatic proliferation and to cure inflammatory bowel disease in vivo. Because these phenotypic characteristics are distinct from those of other IL-12 family members, this novel Ebi3-IL-12alpha heterodimeric cytokine has been designated interleukin-35 (IL-35). Ectopic expression of IL-35 confers regulatory activity on naive T cells, whereas recombinant IL-35 suppresses T-cell proliferation. Taken together, these data identify IL-35 as a novel inhibitory cytokine that may be specifically produced by T(reg) cells and is required for maximal suppressive activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myeloid-derived suppressor cells: linking inflammation and cancer.

            Many cancer immunotherapies developed in experimental animals have been tested in clinical trials. Although some have shown modest clinical effects, most have not been effective. Recent studies have identified myeloid-origin cells that are potent suppressors of tumor immunity and therefore a significant impediment to cancer immunotherapy. "Myeloid-derived suppressor cells" (MDSC) accumulate in the blood, lymph nodes, and bone marrow and at tumor sites in most patients and experimental animals with cancer and inhibit both adaptive and innate immunity. MDSC are induced by tumor-secreted and host-secreted factors, many of which are proinflammatory molecules. The induction of MDSC by proinflammatory mediators led to the hypothesis that inflammation promotes the accumulation of MDSC that down-regulate immune surveillance and antitumor immunity, thereby facilitating tumor growth. This article reviews the characterization and suppressive mechanisms used by MDSC to block tumor immunity and describes the mechanisms by which inflammation promotes tumor progression through the induction of MDSC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.

              A large proportion of colorectal cancers (CRCs) display mutational inactivation of the TGF-β pathway, yet, paradoxically, they are characterized by elevated TGF-β production. Here, we unveil a prometastatic program induced by TGF-β in the microenvironment that associates with a high risk of CRC relapse upon treatment. The activity of TGF-β on stromal cells increases the efficiency of organ colonization by CRC cells, whereas mice treated with a pharmacological inhibitor of TGFBR1 are resilient to metastasis formation. Secretion of IL11 by TGF-β-stimulated cancer-associated fibroblasts (CAFs) triggers GP130/STAT3 signaling in tumor cells. This crosstalk confers a survival advantage to metastatic cells. The dependency on the TGF-β stromal program for metastasis initiation could be exploited to improve the diagnosis and treatment of CRC. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/314564
                URI : http://frontiersin.org/people/u/153364
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                19 April 2016
                2016
                : 6
                : 96
                Affiliations
                [1] 1Institute of Pathology, University of Bern , Bern, Switzerland
                [2] 2Graduate School for Cellular and Biomedical Sciences, University of Bern , Bern, Switzerland
                Author notes

                Edited by: Giuseppe Valentino Masucci, Karolinska Institute, Sweden

                Reviewed by: Viktor Umansky, German Cancer Research Center (DKFZ), Germany; Franck Pages, University Paris Descartes, France; Eva Závadova, Charles University Prague, Czech Republic

                *Correspondence: Philippe Krebs, philippe.krebs@ 123456pathology.unibe.ch

                Specialty section: This article was submitted to Gastrointestinal Cancers, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2016.00096
                4835502
                27148488
                eff7c44f-0d60-46a0-bab5-429737f82563
                Copyright © 2016 Mager, Wasmer, Rau and Krebs.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 January 2016
                : 02 April 2016
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 306, Pages: 19, Words: 18757
                Funding
                Funded by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung 10.13039/501100001711
                Award ID: 310030_138188, 314730_163086
                Funded by: UniBern Forschungsstiftung 10.13039/501100007282
                Funded by: San Salvatore Foundation
                Funded by: Foundation Johanna Duermueller-Bol
                Funded by: Gertrud-Hagmann Foundation for Malignoma Research
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                colorectal cancer,inflammation,cytokine,tumor microenvironment,biomarker
                Oncology & Radiotherapy
                colorectal cancer, inflammation, cytokine, tumor microenvironment, biomarker

                Comments

                Comment on this article