62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pseudomonas aeruginosa is a well-studied opportunistic pathogen that is particularly known for its intrinsic antimicrobial resistance, diverse metabolic capacity, and its ability to cause life threatening infections in cystic fibrosis patients. The Pseudomonas Genome Database ( http://www.pseudomonas.com) was originally developed as a resource for peer-reviewed, continually updated annotation for the Pseudomonas aeruginosa PAO1 reference strain genome. In order to facilitate cross-strain and cross-species genome comparisons with other Pseudomonas species of importance, we have now expanded the database capabilities to include all Pseudomonas species, and have developed or incorporated methods to facilitate high quality comparative genomics. The database contains robust assessment of orthologs, a novel ortholog clustering method, and incorporates five views of the data at the sequence and annotation levels (Gbrowse, Mauve and custom views) to facilitate genome comparisons. A choice of simple and more flexible user-friendly Boolean search features allows researchers to search and compare annotations or sequences within or between genomes. Other features include more accurate protein subcellular localization predictions and a user-friendly, Boolean searchable log file of updates for the reference strain PAO1. This database aims to continue to provide a high quality, annotated genome resource for the research community and is available under an open source license.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple sequence alignment with the Clustal series of programs.

          R Chenna (2003)
          The Clustal series of programs are widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees. The popularity of the programs depends on a number of factors, including not only the accuracy of the results, but also the robustness, portability and user-friendliness of the programs. New features include NEXUS and FASTA format output, printing range numbers and faster tree calculation. Although, Clustal was originally developed to run on a local computer, numerous Web servers have been set up, notably at the EBI (European Bioinformatics Institute) (http://www.ebi.ac.uk/clustalw/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The generic genome browser: a building block for a model organism system database.

            The Generic Model Organism System Database Project (GMOD) seeks to develop reusable software components for model organism system databases. In this paper we describe the Generic Genome Browser (GBrowse), a Web-based application for displaying genomic annotations and other features. For the end user, features of the browser include the ability to scroll and zoom through arbitrary regions of a genome, to enter a region of the genome by searching for a landmark or performing a full text search of all features, and the ability to enable and disable tracks and change their relative order and appearance. The user can upload private annotations to view them in the context of the public ones, and publish those annotations to the community. For the data provider, features of the browser software include reliance on readily available open source components, simple installation, flexible configuration, and easy integration with other components of a model organism system Web site. GBrowse is freely available under an open source license. The software, its documentation, and support are available at http://www.gmod.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants.

              Random transposon insertion libraries have proven invaluable in studying bacterial genomes. Libraries that approach saturation must be large, with multiple insertions per gene, making comprehensive genome-wide scanning difficult. To facilitate genome-scale study of the opportunistic human pathogen Pseudomonas aeruginosa strain PA14, we constructed a nonredundant library of PA14 transposon mutants (the PA14NR Set) in which nonessential PA14 genes are represented by a single transposon insertion chosen from a comprehensive library of insertion mutants. The parental library of PA14 transposon insertion mutants was generated by using MAR2xT7, a transposon compatible with transposon-site hybridization and based on mariner. The transposon-site hybridization genetic footprinting feature broadens the utility of the library by allowing pooled MAR2xT7 mutants to be individually tracked under different experimental conditions. A public, internet-accessible database (the PA14 Transposon Insertion Mutant Database, http://ausubellab.mgh.harvard.edu/cgi-bin/pa14/home.cgi) was developed to facilitate construction, distribution, and use of the PA14NR Set. The usefulness of the PA14NR Set in genome-wide scanning for phenotypic mutants was validated in a screen for attachment to abiotic surfaces. Comparison of the genes disrupted in the PA14 transposon insertion library with an independently constructed insertion library in P. aeruginosa strain PAO1 provides an estimate of the number of P. aeruginosa essential genes.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                January 2009
                January 2009
                31 October 2008
                31 October 2008
                : 37
                : Database issue , Database issue
                : D483-D488
                Affiliations
                1Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6 and 2Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
                Author notes
                *To whom correspondence should be addressed. Tel: +1 778 782 5646; Fax: +1 778 782 5583; Email: brinkman@ 123456sfu.ca
                Article
                gkn861
                10.1093/nar/gkn861
                2686508
                18978025
                efedc62c-7f0b-4840-adc2-1801377ff81f
                © 2008 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 September 2008
                : 15 October 2008
                : 16 October 2008
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article