10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Characterization of Three Novel Bartonella Strains in a Rodent and Two Bat Species from Mexico

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rodents and bats are the most diverse mammal group that host Bartonella species. In the Americas, they were described as harboring Bartonella species; however, they were mostly characterized to the genotypic level. We describe here Bartonella isolates obtained from blood samples of one rodent (Peromyscus yucatanicus from San José Pibtuch, Yucatan) and two bat species (Desmodus rotundus from Progreso, and Pteronotus parnellii from Chamela-Cuitzmala) from Mexico. We sequenced and described the genomic features of three Bartonella strains and performed phylogenomic and pangenome analyses to decipher their phylogenetic relationships. The mouse-associated genome was closely related to Bartonella vinsonii. The two bat-associated genomes clustered into a single distinct clade in between lineages 3 and 4, suggesting to be an ancestor of the rodent-associated Bartonella clade (lineage 4). These three genomes showed <95% OrthoANI values compared to any other Bartonella genome, and therefore should be considered as novel species. In addition, our analyses suggest that the B. vinsonii complex should be revised, and all B. vinsonii subspecies need to be renamed and considered as full species. The phylogenomic clustering of the bat-associated Bartonella strains and their virulence factor profile (lack of the Vbh/TraG conjugation system remains of the T4SS) suggest that it should be considered as a new lineage clade (L5) within the Bartonella genus.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Prokka: rapid prokaryotic genome annotation.

          T Seemann (2014)
          The multiplex capability and high yield of current day DNA-sequencing instruments has made bacterial whole genome sequencing a routine affair. The subsequent de novo assembly of reads into contigs has been well addressed. The final step of annotating all relevant genomic features on those contigs can be achieved slowly using existing web- and email-based systems, but these are not applicable for sensitive data or integrating into computational pipelines. Here we introduce Prokka, a command line software tool to fully annotate a draft bacterial genome in about 10 min on a typical desktop computer. It produces standards-compliant output files for further analysis or viewing in genome browsers. Prokka is implemented in Perl and is freely available under an open source GPLv2 license from http://vicbioinformatics.com/. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments

            Background We recently described FastTree, a tool for inferring phylogenies for alignments with up to hundreds of thousands of sequences. Here, we describe improvements to FastTree that improve its accuracy without sacrificing scalability. Methodology/Principal Findings Where FastTree 1 used nearest-neighbor interchanges (NNIs) and the minimum-evolution criterion to improve the tree, FastTree 2 adds minimum-evolution subtree-pruning-regrafting (SPRs) and maximum-likelihood NNIs. FastTree 2 uses heuristics to restrict the search for better trees and estimates a rate of evolution for each site (the “CAT” approximation). Nevertheless, for both simulated and genuine alignments, FastTree 2 is slightly more accurate than a standard implementation of maximum-likelihood NNIs (PhyML 3 with default settings). Although FastTree 2 is not quite as accurate as methods that use maximum-likelihood SPRs, most of the splits that disagree are poorly supported, and for large alignments, FastTree 2 is 100–1,000 times faster. FastTree 2 inferred a topology and likelihood-based local support values for 237,882 distinct 16S ribosomal RNAs on a desktop computer in 22 hours and 5.8 gigabytes of memory. Conclusions/Significance FastTree 2 allows the inference of maximum-likelihood phylogenies for huge alignments. FastTree 2 is freely available at http://www.microbesonline.org/fasttree.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes

              Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made possible by advances in computational methods and substantial reductions in sequencing costs. Although this increasing breadth of draft genomes is providing key information regarding the evolutionary and functional diversity of microbial life, it has become impractical to finish all available reference genomes. Making robust biological inferences from draft genomes requires accurate estimates of their completeness and contamination. Current methods for assessing genome quality are ad hoc and generally make use of a limited number of “marker” genes conserved across all bacterial or archaeal genomes. Here we introduce CheckM, an automated method for assessing the quality of a genome using a broader set of marker genes specific to the position of a genome within a reference genome tree and information about the collocation of these genes. We demonstrate the effectiveness of CheckM using synthetic data and a wide range of isolate-, single-cell-, and metagenome-derived genomes. CheckM is shown to provide accurate estimates of genome completeness and contamination and to outperform existing approaches. Using CheckM, we identify a diverse range of errors currently impacting publicly available isolate genomes and demonstrate that genomes obtained from single cells and metagenomic data vary substantially in quality. In order to facilitate the use of draft genomes, we propose an objective measure of genome quality that can be used to select genomes suitable for specific gene- and genome-centric analyses of microbial communities.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MICRKN
                Microorganisms
                Microorganisms
                MDPI AG
                2076-2607
                February 2023
                January 30 2023
                : 11
                : 2
                : 340
                Article
                10.3390/microorganisms11020340
                9962129
                36838305
                2c2dd752-77ba-40d0-b116-8c20cc052c77
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article