10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The polymyxin and lipopeptide classes of antibiotics are membrane-targeting drugs of last resort used to treat infections caused by multi-drug-resistant pathogens. Despite similar structures, these two antibiotic classes have distinct modes of action and clinical uses. The polymyxins target lipopolysaccharide in the membranes of most Gram-negative species and are often used to treat infections caused by carbapenem-resistant species such as Escherichia coli , Acinetobacter baumannii and Pseudomonas aeruginosa . By contrast, the lipopeptide daptomycin requires membrane phosphatidylglycerol for activity and is only used to treat infections caused by drug-resistant Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. However, despite having distinct targets, both antibiotic classes cause membrane disruption, are potently bactericidal in vitro and share similarities in resistance mechanisms. Furthermore, there are concerns about the efficacy of these antibiotics, and there is increasing interest in using both polymyxins and daptomycin in combination therapies to improve patient outcomes. In this review article, we will explore what is known about these distinct but structurally similar classes of antibiotics, discuss recent advances in the field and highlight remaining gaps in our knowledge.

          Related collections

          Most cited references225

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study.

          Until now, polymyxin resistance has involved chromosomal mutations but has never been reported via horizontal gene transfer. During a routine surveillance project on antimicrobial resistance in commensal Escherichia coli from food animals in China, a major increase of colistin resistance was observed. When an E coli strain, SHP45, possessing colistin resistance that could be transferred to another strain, was isolated from a pig, we conducted further analysis of possible plasmid-mediated polymyxin resistance. Herein, we report the emergence of the first plasmid-mediated polymyxin resistance mechanism, MCR-1, in Enterobacteriaceae.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global increase and geographic convergence in antibiotic consumption between 2000 and 2015

            Significance Antibiotic resistance, driven by antibiotic consumption, is a growing global health threat. Our report on antibiotic use in 76 countries over 16 years provides an up-to-date comprehensive assessment of global trends in antibiotic consumption. We find that the antibiotic consumption rate in low- and middle-income countries (LMICs) has been converging to (and in some countries surpassing) levels typically observed in high-income countries. However, inequities in drug access persist, as many LMICs continue to be burdened with high rates of infectious disease-related mortality and low rates of antibiotic consumption. Our findings emphasize the need for global surveillance of antibiotic consumption to support policies to reduce antibiotic consumption and resistance while providing access to these lifesaving drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The bacterial cell envelope.

              The bacteria cell envelope is a complex multilayered structure that serves to protect these organisms from their unpredictable and often hostile environment. The cell envelopes of most bacteria fall into one of two major groups. Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which itself is surrounded by an outer membrane containing lipopolysaccharide. Gram-positive bacteria lack an outer membrane but are surrounded by layers of peptidoglycan many times thicker than is found in the gram-negatives. Threading through these layers of peptidoglycan are long anionic polymers, called teichoic acids. The composition and organization of these envelope layers and recent insights into the mechanisms of cell envelope assembly are discussed.
                Bookmark

                Author and article information

                Journal
                Microbiology (Reading)
                Microbiology (Reading)
                micro
                micro
                Microbiology
                Microbiology Society
                1350-0872
                1465-2080
                2022
                4 February 2022
                4 February 2022
                : 168
                : 2
                : 001136
                Affiliations
                [ 1] departmentMRC Centre for Molecular Bacteriology and Infection , Imperial College London, Armstrong Rd , London, SW7 2AZ, UK
                Author notes
                *Correspondence: Andrew M. Edwards, a.edwards@ 123456imperial.ac.uk
                [†]

                These authors contributed equally to this work

                Author information
                https://orcid.org/0000-0003-1126-6640
                https://orcid.org/0000-0002-8131-0128
                https://orcid.org/0000-0002-7173-7355
                Article
                001136
                10.1099/mic.0.001136
                8941995
                35118938
                eef3efe2-af8c-4178-9a97-ba5088edf29e
                © 2022 The Authors

                This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.

                History
                : 02 November 2021
                : 06 January 2022
                Funding
                Funded by: National Institute for Health Research
                Award ID: Imperial College BRC
                Award Recipient : NotApplicable
                Funded by: Rosetrees Trust
                Award Recipient : AndrewM. Edwards
                Funded by: Medical Research Council
                Award ID: MR/N014103/1
                Award Recipient : AkshaySabnis
                Funded by: Wellcome Trust
                Award ID: 203812/Z/16/Z
                Award Recipient : ElizabethV. K. Ledger
                Categories
                Reviews
                Custom metadata
                0

                polymyxin,lipopeptide,colistin,daptomycin,antibiotic,resistance
                polymyxin, lipopeptide, colistin, daptomycin, antibiotic, resistance

                Comments

                Comment on this article