8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Reinvestigation of the antioxidant properties of conjugated linoleic acid.

      Lipids
      Antioxidants, pharmacology, Arachidonic Acid, chemistry, Butylated Hydroxytoluene, Egtazic Acid, Fatty Acids, analysis, Free Radical Scavengers, Gas Chromatography-Mass Spectrometry, Linoleic Acid, Linoleic Acids, Liposomes, Oxidation-Reduction, Oxidative Stress, Phosphatidylcholines, Spectrophotometry, Vitamin E

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite repeated suggestions that antioxidant activity of conjugated linoleic acid (CLA), a collective of conjugated dienoic isomers of linoleic acid, underlies its reported anticarcinogenic and antiatherosclerotic effects, the antioxidant properties of CLA remain ill-defined. Therefore, this study was undertaken to gain more insight into the mechanism of potential CLA antioxidant activity. It was tested whether CLA could protect membranes composed of 1-palmitoyl-2-linoleoyl phosphatidylcholine (PLPC) from oxidative modification under conditions of metal ion-dependent or -independent oxidative stress. Progress of oxidation was determined by direct spectrophotometric measurement of conjugated diene formation and by gas chromatographic/mass spectrometric analysis of fatty acids. The oxidative susceptibility of CLA was higher than that of linoleic acid, and comparable to arachidonic acid. When oxidation of PLPC (1.0 mM) was initiated using the lipid-soluble 2,2'-azobis(2,4-dimethylvaleronitrile) or the water-soluble 2,2'-azobis(2-amidinopropane) hydrochloride, the radical scavengers vitamin E and butylated hydroxytoluene (BHT) at 0.75 microM efficiently inhibited PLPC oxidation, as evident from a clear lag phase. In contrast, 0.75 microM CLA did not have any significant effect on PLPC oxidation. Inhibition of PLPC oxidation by higher concentrations of CLA appeared due to competition, not to an antioxidant effect. When oxidation of PLPC was initiated by hydrogen peroxide/Fe2+ (500 microM/0.05-20 microM), both vitamin E (1 microM) and ethylene glycol-bis(aminoethyl ether) tetraacetic acid (50 microM) efficiently inhibited PLPC oxidation. However, CLA (1-50 microM) did not show a clear protective effect under any of the conditions tested. We conclude that CLA, under these test conditions, does not act as an efficient radical scavenger in any way comparable to vitamin E or BHT. CLA also does not appear to be converted into a metal chelator under metal-ion dependent oxidative stress, as had previously been suggested. On the basis of our observations, a role for CLA as an antioxidant does not seem plausible.

          Related collections

          Author and article information

          Comments

          Comment on this article