3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Great Pond Snail ( Lymnaea stagnalis) as a Model of Aging and Age-Related Memory Impairment: An Overview

      1 , 1 , 2 , 2 , 1
      The Journals of Gerontology: Series A
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the increase of life span, normal aging and age-related memory decline are affecting an increasing number of people; however, many aspects of these processes are still not fully understood. Although vertebrate models have provided considerable insights into the molecular and electrophysiological changes associated with brain aging, invertebrates, including the widely recognized molluscan model organism, the great pond snail (Lymnaea stagnalis), have proven to be extremely useful for studying mechanisms of aging at the level of identified individual neurons and well-defined circuits. Its numerically simpler nervous system, well-characterized life cycle, and relatively long life span make it an ideal organism to study age-related changes in the nervous system. Here, we provide an overview of age-related studies on L. stagnalis and showcase this species as a contemporary choice for modeling the molecular, cellular, circuit, and behavioral mechanisms of aging and age-related memory impairment.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes.

          We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes). Parallel searches have been performed with multiple alignments of four insect species (three species of Drosophila and Anopheles gambiae), two species of Caenorhabditis, and seven species of Saccharomyces. Conserved elements were identified with a computer program called phastCons, which is based on a two-state phylogenetic hidden Markov model (phylo-HMM). PhastCons works by fitting a phylo-HMM to the data by maximum likelihood, subject to constraints designed to calibrate the model across species groups, and then predicting conserved elements based on this model. The predicted elements cover roughly 3%-8% of the human genome (depending on the details of the calibration procedure) and substantially higher fractions of the more compact Drosophila melanogaster (37%-53%), Caenorhabditis elegans (18%-37%), and Saccharaomyces cerevisiae (47%-68%) genomes. From yeasts to vertebrates, in order of increasing genome size and general biological complexity, increasing fractions of conserved bases are found to lie outside of the exons of known protein-coding genes. In all groups, the most highly conserved elements (HCEs), by log-odds score, are hundreds or thousands of bases long. These elements share certain properties with ultraconserved elements, but they tend to be longer and less perfectly conserved, and they overlap genes of somewhat different functional categories. In vertebrates, HCEs are associated with the 3' UTRs of regulatory genes, stable gene deserts, and megabase-sized regions rich in moderately conserved noncoding sequences. Noncoding HCEs also show strong statistical evidence of an enrichment for RNA secondary structure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA methylation landscapes: provocative insights from epigenomics.

            The genomes of many animals, plants and fungi are tagged by methylation of DNA cytosine. To understand the biological significance of this epigenetic mark it is essential to know where in the genome it is located. New techniques are making it easier to map DNA methylation patterns on a large scale and the results have already provided surprises. In particular, the conventional view that DNA methylation functions predominantly to irreversibly silence transcription is being challenged. Not only is promoter methylation often highly dynamic during development, but many organisms also seem to target DNA methylation specifically to the bodies of active genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Suppression of aging in mice by the hormone Klotho.

              A defect in Klotho gene expression in mice accelerates the degeneration of multiple age-sensitive traits. Here, we show that overexpression of Klotho in mice extends life span. Klotho protein functions as a circulating hormone that binds to a cell-surface receptor and represses intracellular signals of insulin and insulin-like growth factor 1 (IGF1), an evolutionarily conserved mechanism for extending life span. Alleviation of aging-like phenotypes in Klotho-deficient mice was observed by perturbing insulin and IGF1 signaling, suggesting that Klotho-mediated inhibition of insulin and IGF1 signaling contributes to its anti-aging properties. Klotho protein may function as an anti-aging hormone in mammals.
                Bookmark

                Author and article information

                Contributors
                Journal
                The Journals of Gerontology: Series A
                Oxford University Press (OUP)
                1079-5006
                1758-535X
                January 16 2021
                January 16 2021
                Affiliations
                [1 ]NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
                [2 ]Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
                Article
                10.1093/gerona/glab014
                ee7b0481-e6f9-4c47-951e-fc38c9cc5e62
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article