5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuropeptide Localization in Lymnaea stagnalis: From the Central Nervous System to Subcellular Compartments

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to the relatively small number of neurons (few tens of thousands), the well-established multipurpose model organism Lymnaea stagnalis, great pond snail, has been extensively used to study the functioning of the nervous system. Unlike the more complex brains of higher organisms, L. stagnalis has a relatively simple central nervous system (CNS) with well-defined circuits (e.g., feeding, locomotion, learning, and memory) and identified individual neurons (e.g., cerebral giant cell, CGC), which generate behavioral patterns. Accumulating information from electrophysiological experiments maps the network of neuronal connections and the neuronal circuits responsible for basic life functions. Chemical signaling between synaptic-coupled neurons is underpinned by neurotransmitters and neuropeptides. This review looks at the rapidly expanding contributions of mass spectrometry (MS) to neuropeptide discovery and identification at different granularity of CNS organization. Abundances and distributions of neuropeptides in the whole CNS, eleven interconnected ganglia, neuronal clusters, single neurons, and subcellular compartments are captured by MS imaging and single cell analysis techniques. Combining neuropeptide expression and electrophysiological data, and aided by genomic and transcriptomic information, the molecular basis of CNS-controlled biological functions is increasingly revealed.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain.

          The human brain is often considered to be the most cognitively capable among mammalian brains and to be much larger than expected for a mammal of our body size. Although the number of neurons is generally assumed to be a determinant of computational power, and despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 +/- 8.1 billion NeuN-positive cells ("neurons") and 84.6 +/- 9.8 billion NeuN-negative ("nonneuronal") cells. With only 19% of all neurons located in the cerebral cortex, greater cortical size (representing 82% of total brain mass) in humans compared with other primates does not reflect an increased relative number of cortical neurons. The ratios between glial cells and neurons in the human brain structures are similar to those found in other primates, and their numbers of cells match those expected for a primate of human proportions. These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain. (c) 2009 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS.

            Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been used to generate ion images of samples in one or more mass-to-charge (m/z) values, providing the capability of mapping specific molecules to two-dimensional coordinates of the original sample. The high sensitivity of the technique (low-femtomole to attomole levels for proteins and peptides) allows the study of organized biochemical processes occurring in, for example, mammalian tissue sections. The mass spectrometer is used to determine the molecular weights of the molecular in the surface layers of the tissue. Molecules desorbed from the sample typically are singly protonated, giving an ion at (M + H)+, where M is the molecular mass. The procedure involves coating the tissue section, or a blotted imprint of the section, with a thin layer of energy-absorbing matrix and then analyzing the sample to produce an ordered array of mass spectra, each containing nominal m/z values typically covering a range of over 50,000 Da. Images can be displayed in individual m/z values as a selected ion image, which would localize individual compounds in the tissue, or as summed ion images. MALDI ion images of tissue sections can be obtained directly from tissue slices following preparative steps, and this is demonstrated for the mapping of insulin contained in an islet in a section of rat pancreas, hormone peptides in a small area of a section of rat pituitary, and a small protein bound to the membrane of human mucosa cells. Alternatively, imprints of the tissue can be analyzed by blotting the tissue sections on specially prepared targets containing an adsorbent material, e.g., C-18 coated resin beads. Peptides and small proteins bind to the C-18 and create a positive imprint of the tissue which can then be imaged by the mass spectrometer. This is demonstrated for the MALDI ion image analysis of regions of rat splenic pancreas and for an area of rat pituitary traversing the anterior, intermediate, and posterior regions where localized peptides were mapped. In a single spectrum from the anterior/intermediate lobe of a rat pituitary print, over 50 ions corresponding to the peptides present in this tissue were observed as well as precursors, isoforms, and metabolic fragments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A mass spectrometry-guided genome mining approach for natural product peptidogenomics

              Peptide natural products exhibit broad biological properties and are commonly produced by orthogonal ribosomal and nonribosomal pathways in prokaryotes and eukaryotes. To harvest this large and diverse resource of bioactive molecules, we introduce Natural Product Peptidogenomics (NPP), a new mass spectrometry-guided genome mining method that connects the chemotypes of peptide natural products to their biosynthetic gene clusters by iteratively matching de novo MSn structures to genomics-based structures following current biosynthetic logic. In this study we demonstrate that NPP enabled the rapid characterization of >10 chemically diverse ribosomal and nonribosomal peptide natural products of novel composition from streptomycete bacteria as a proof of concept to begin automating the genome mining process. We show the identification of lantipeptides, lasso peptides, linardins, formylated peptides and lipopeptides, many of which from well-characterized model streptomycetes, highlighting the power of NPP in the discovery of new peptide natural products from even intensely studied organisms.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                20 May 2021
                2021
                : 14
                : 670303
                Affiliations
                [1] 1Department of Chemistry, The George Washington University, Washington , DC, United States
                [2] 2Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, MA, United States
                [3] 3Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH) , Tihany, Hungary
                [4] 4Soós Ernő Research and Development Center, University of Pannonia , Nagykanizsa, Hungary
                Author notes

                Edited by: Miao He, Fudan University, China

                Reviewed by: Etsuro Ito, Waseda University, Japan; Elena V. Romanova, University of Illinois at Urbana-Champaign, United States

                Article
                10.3389/fnmol.2021.670303
                8172996
                2c7e50c2-e061-44ab-a141-96a0067647a4
                Copyright © 2021 Wood, Stopka, Zhang, Mattson, Maasz, Pirger and Vertes.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 February 2021
                : 09 April 2021
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 96, Pages: 13, Words: 0
                Categories
                Neuroscience
                Review

                Neurosciences
                lymnaea stagnalis,mass spectrometry,neuropeptide,central nervous system,single neuron analysis

                Comments

                Comment on this article