53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Photobiomodulation at Different Wavelengths Boosts Mitochondrial Redox Metabolism and Hemoglobin Oxygenation: Lasers vs. Light-Emitting Diodes In Vivo

      , , , ,
      Metabolites
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our group previously examined 8 min photobiomodulation (PBM) by 1064 nm laser on the human forearm in vivo to determine its significant effects on vascular hemodynamics and cytochrome c oxidase redox activity. Since PBM uses a wide array of wavelengths, in this paper, we investigated (i) whether different wavelengths of lasers induced different PBM effects, and (ii) if a light-emitting diode (LED) at a similar wavelength to a laser could induce similar PBM effects. A broadband near-infrared spectroscopy (bbNIRS) system was utilized to assess concentration changes in oxygenated hemoglobin (Δ[HbO]) and oxidized cytochrome c oxidase (Δ[oxCCO]) during and after PBM with lasers at 800 nm, 850 nm, and 1064 nm, as well as a LED at 810 nm. Two groups of 10 healthy participants were measured before, during, and after active and sham PBM on their forearms. All results were tested for significance using repeated measures ANOVA. Our results showed that (i) lasers at all three wavelengths enabled significant increases in Δ[HbO] and Δ[oxCCO] of the human forearm while the 1064 nm laser sustained the increases longer, and that (ii) the 810-nm LED with a moderate irradiance (≈135 mW/cm2) induced measurable and significant rises in Δ[HbO] and Δ[oxCCO] with respect to the sham stimulation on the human forearm.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Oxidative stress, aging, and diseases

          Reactive oxygen and nitrogen species (RONS) are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer), including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of several diseases, but further investigation is needed to evaluate the real efficacy of these therapeutic interventions. The purpose of this paper is to provide a review of literature on this complex topic of ever increasing interest.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optical properties of biological tissues: a review.

            A review of reported tissue optical properties summarizes the wavelength-dependent behavior of scattering and absorption. Formulae are presented for generating the optical properties of a generic tissue with variable amounts of absorbing chromophores (blood, water, melanin, fat, yellow pigments) and a variable balance between small-scale scatterers and large-scale scatterers in the ultrastructures of cells and tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application.

              This review is aimed at celebrating the upcoming 20th anniversary of the birth of human functional near-infrared spectroscopy (fNIRS). After the discovery in 1992 that the functional activation of the human cerebral cortex (due to oxygenation and hemodynamic changes) can be explored by NIRS, human functional brain mapping research has gained a new dimension. fNIRS or optical topography, or near-infrared imaging or diffuse optical imaging is used mainly to detect simultaneous changes in optical properties of the human cortex from multiple measurement sites and displays the results in the form of a map or image over a specific area. In order to place current fNIRS research in its proper context, this paper presents a brief historical overview of the events that have shaped the present status of fNIRS. In particular, technological progresses of fNIRS are highlighted (i.e., from single-site to multi-site functional cortical measurements (images)), introduction of the commercial multi-channel systems, recent commercial wireless instrumentation and more advanced prototypes. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                METALU
                Metabolites
                Metabolites
                MDPI AG
                2218-1989
                February 2022
                January 23 2022
                : 12
                : 2
                : 103
                Article
                10.3390/metabo12020103
                35208178
                ee5c2d55-ca14-47ab-b625-b94c424343f4
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content413

                Cited by15

                Most referenced authors562