37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Point Mutation in a Herpesvirus Polymerase Determines Neuropathogenicity

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infection with equid herpesvirus type 1 (EHV-1) leads to respiratory disease, abortion, and neurologic disorders in horses. Molecular epidemiology studies have demonstrated that a single nucleotide polymorphism resulting in an amino acid variation of the EHV-1 DNA polymerase (N752/D752) is significantly associated with the neuropathogenic potential of naturally occurring strains. To test the hypothesis that this single amino acid exchange by itself influences neuropathogenicity, we generated recombinant viruses with differing polymerase sequences. Here we show that the N752 mutant virus caused no neurologic signs in the natural host, while the D752 virus was able to cause inflammation of the central nervous system and ataxia. Neurologic disease induced by the D752 virus was concomitant with significantly increased levels of viremia ( p = 0.01), but the magnitude of virus shedding from the nasal mucosa was similar between the N752 and D752 viruses. Both viruses replicated with similar kinetics in fibroblasts and epithelial cells, but exhibited differences in leukocyte tropism. Last, we observed a significant increase ( p < 0.001) in sensitivity of the N752 mutant to aphidicolin, a drug targeting the viral polymerase. Our results demonstrate that a single amino acid variation in a herpesvirus enzyme can influence neuropathogenic potential without having a major effect on virus shedding from infected animals, which is important for horizontal spread in a population. This observation is very interesting from an evolutionary standpoint and is consistent with data indicating that the N752 DNA pol genotype is predominant in the EHV-1 population, suggesting that decreased viral pathogenicity in the natural host might not be at the expense of less efficient inter-individual transmission.

          Author Summary

          Equid herpesvirus type 1 (EHV-1), a close relative of varicella-zoster virus and herpes simplex virus of humans, is spread by aerosol and is the causative agent of the most common neurologic disease of horses. Outbreaks of the neurologic form of EHV-1 can be devastating to individual animals and entire herds, and approximately one-third of the affected horses generally are at risk of death or suffer so extensively that euthanasia becomes necessary. Our report provides evidence for a direct causal link between the genotype of EHV-1 strains and their neurovirulence, and thereby gives a long-awaited explanation for the conundrum of the different clinical outcomes following EHV-1 infection. We proved that alteration of one amino acid in the key viral enzyme, DNA polymerase, which is conserved in all herpesviruses, renders the virus unable to cause neurologic disease. The improved clinical outcome is likely due to the reduction in virus levels in the bloodstream, ultimately resulting in less virus reaching the central nervous system. In summary, our study shows that herpesvirus virulence and tissue tropism in the natural host are linked with the function of a key virus-encoded enzyme involved in DNA replication.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA.

          Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective lambda prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97, 5978-5983). Importantly, the recombination is proficient with DNA homologies as short as 30-50 bp, making it possible to use PCR-amplified fragments as the targeting cassette. Here, we adapt this prophage system for use in bacterial artificial chromosome (BAC) engineering by transferring it to DH10B cells, a BAC host strain. In addition, arabinose inducible cre and flpe genes are introduced into these cells to facilitate BAC modification using loxP and FRT sites. Next, we demonstrate the utility of this recombination system by using it to target cre to the 3' end of the mouse neuron-specific enolase (Eno2) gene carried on a 250-kb BAC, which made it possible to generate BAC transgenic mice that specifically express Cre in all mature neurons. In addition, we show that fragments as large as 80 kb can be subcloned from BACs by gap repair using this recombination system, obviating the need for restriction enzymes or DNA ligases. Finally, we show that BACs can be modified with this recombination system in the absence of drug selection. The ability to modify or subclone large fragments of genomic DNA with precision should facilitate many kinds of genomic experiments that were difficult or impossible to perform previously and aid in studies of gene function in the postgenomic era. Copyright 2001 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome.

            A strategy for cloning and mutagenesis of an infectious herpesvirus genome is described. The mouse cytomegalovirus genome was cloned and maintained as a 230 kb bacterial artificial chromosome (BAC) in E. coli. Transfection of the BAC plasmid into eukaryotic cells led to a productive virus infection. The feasibility to introduce targeted mutations into the BAC cloned virus genome was shown by mutation of the immediate-early 1 gene and generation of a mutant virus. Thus, the complete construction of a mutant herpesvirus genome can now be carried out in a controlled manner prior to the reconstitution of infectious progeny. The described approach should be generally applicable to the mutagenesis of genomes of other large DNA viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An attempt to unify the structure of polymerases.

              With the great availability of sequences from RNA- and DNA-dependent RNA and DNA polymerases, it has become possible to delineate a few highly conserved regions for various polymerase types. In this work a DNA polymerase sequence from bacteriophage SPO2 was found to be homologous to the polymerase domain of the Klenow fragment of polymerase I from Escherichia coli, which is known to be closely related to those from Staphylococcus pneumoniae, Thermus aquaticus and bacteriophages T7 and T5. The alignment of the SPO2 polymerase with the other five sequences considerably narrowed the conserved motifs in these proteins. Three of the motifs matched reasonably all the conserved motifs of another DNA polymerase type, characterized by human polymerase alpha. It is also possible to find these three motifs in monomeric DNA-dependent RNA polymerases and two of them in DNA polymerase beta and DNA terminal transferases. These latter two motifs also matched two of the four motifs recently identified in 84 RNA-dependent polymerases. From the known tertiary architecture of the Klenow fragment of E. coli pol I, a spatial arrangement can be implied for these motifs. In addition, numerous biochemical experiments suggesting a role for the motifs in a common function (dNTP binding) also support these inferences. This speculative hypothesis, attempting to unify polymerase structure at least locally, if not globally, under the pol I fold, should provide a useful model to direct mutagenesis experiments to probe template and substrate specificity in polymerases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                plpa
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2007
                9 November 2007
                : 3
                : 11
                : e160
                Affiliations
                [1 ] Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
                [2 ] Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, Padua, Italy
                [3 ] Department of Clinical Sciences, Cornell University, Ithaca, New York, United States of America
                [4 ] Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
                [5 ] Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
                Oregon Health & Science University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: no34@ 123456cornell.edu
                Article
                07-PLPA-RA-0352R3 plpa-03-11-06
                10.1371/journal.ppat.0030160
                2065875
                17997600
                ee14f94f-5d35-4d0f-9183-c97f4ad2f106
                Copyright: © 2007 Goodman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 June 2007
                : 17 September 2007
                Page count
                Pages: 10
                Categories
                Research Article
                Virology
                Viruses
                Mammals
                Custom metadata
                Goodman LB, Loregian A, Perkins GA, Nugent J, Buckles EL, et al. (2007) A point mutation in a herpesvirus polymerase determines neuropathogenicity. PLoS Pathog 3(11): e160. doi: 10.1371/journal.ppat.0030160

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article