0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Triassic terrestrial tetrapod faunas of the Central European Basin, their stratigraphical distribution, and their palaeoenvironments

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references413

          • Record: found
          • Abstract: found
          • Article: not found

          Taphonomic and ecologic information from bone weathering

          Bones of recent mammals in the Amboseli Basin, southern Kenya, exhibit distinctive weathering characteristics that can be related to the time since death and to the local conditions of temperature, humidity and soil chemistry. A categorization of weathering characteristics into six stages, recognizable on descriptive criteria, provides a basis for investigation of weathering rates and processes. The time necessary to achieve each successive weathering stage has been calibrated using known-age carcasses. Most bones decompose beyond recognition in 10 to 15 yr. Bones of animals under 100 kg and juveniles appear to weather more rapidly than bones of large animals or adults. Small-scale rather than widespread environmental factors seem to have greatest influence on weathering characteristics and rates. Bone weathering is potentially valuable as evidence for the period of time represented in recent or fossil bone assemblages, including those on archeological sites, and may also be an important tool in censusing populations of animals in modern ecosystems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lethally hot temperatures during the Early Triassic greenhouse.

            Global warming is widely regarded to have played a contributing role in numerous past biotic crises. Here, we show that the end-Permian mass extinction coincided with a rapid temperature rise to exceptionally high values in the Early Triassic that were inimical to life in equatorial latitudes and suppressed ecosystem recovery. This was manifested in the loss of calcareous algae, the near-absence of fish in equatorial Tethys, and the dominance of small taxa of invertebrates during the thermal maxima. High temperatures drove most Early Triassic plants and animals out of equatorial terrestrial ecosystems and probably were a major cause of the end-Smithian crisis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira.

              The early evolutionary history of Ornithodira (avian-line archosaurs) has hitherto been documented by incomplete (Lagerpeton) or unusually specialized forms (pterosaurs and Silesaurus). Recently, a variety of Silesaurus-like taxa have been reported from the Triassic period of both Gondwana and Laurasia, but their relationships to each other and to dinosaurs remain a subject of debate. Here we report on a new avian-line archosaur from the early Middle Triassic (Anisian) of Tanzania. Phylogenetic analysis places Asilisaurus kongwe gen. et sp. nov. as an avian-line archosaur and a member of the Silesauridae, which is here considered the sister taxon to Dinosauria. Silesaurids were diverse and had a wide distribution by the Late Triassic, with a novel ornithodiran bauplan including leaf-shaped teeth, a beak-like lower jaw, long, gracile limbs, and a quadrupedal stance. Our analysis suggests that the dentition and diet of silesaurids, ornithischians and sauropodomorphs evolved independently from a plesiomorphic carnivorous form. As the oldest avian-line archosaur, Asilisaurus demonstrates the antiquity of both Ornithodira and the dinosaurian lineage. The initial diversification of Archosauria, previously documented by crocodilian-line archosaurs in the Anisian, can now be shown to include a contemporaneous avian-line radiation. The unparalleled taxonomic diversity of the Manda archosaur assemblage indicates that archosaur diversification was well underway by the Middle Triassic or earlier.
                Bookmark

                Author and article information

                Journal
                Earth-Science Reviews
                Earth-Science Reviews
                Elsevier BV
                00128252
                March 2025
                March 2025
                : 105085
                Article
                10.1016/j.earscirev.2025.105085
                ee011fa8-3a22-45d4-84d2-93e3f05768ce
                © 2025

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://www.elsevier.com/legal/tdmrep-license

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,193

                Most referenced authors1,099