12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identifying miRNAs Associated with the Progression of Keloid through mRNA-miRNA Network Analysis and Validating the Targets of miR-29a-3p in Keloid Fibroblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Keloid has brought great trouble to people and currently has no uniformly successful treatment. It is urgent to find new targets to effectively prevent the progress of keloid. The current research mainly identifies the differentially expressed genes (DEGs) in keloid through high-throughput sequencing technology and bioinformatics analysis technology, to screen new therapeutic targets and potential biomarkers. However, due to the different samples, different control groups, and small sample sizes, the sequencing results obtained from different studies are quite different and lack reliability. It is necessary to analyze the existing datasets in a reasonable way.

          Methods

          Datasets about keloid were filtered in Gene Expression Omnibus (GEO) and ArrayExpress databases according to the inclusion and exclusion criteria. The discovery datasets were used for summarizing significant DEGs, and the validation datasets were to validate the mRNA and miRNA expression levels. The Encyclopedia of RNA Interactomes (ENCORI) online platform was used to predict the interactions between miRNAs and their target mRNAs. Protein-protein interaction network (PPI network) analysis and functional enrichment analysis were conducted. miRNA-mRNA network was established by Cytoscape software and verified in keloid tissue ( n = 8) by RT-qPCR. miR-29a-3p mimic and inhibitor were transfected into keloid fibroblasts (KFs) to preliminary verify its targets, the prognostic value of which was estimated by the receiver operating characteristic (ROC) curve.

          Results

          A total of 6 datasets involving 20 patients were included. 15 miRNAs and 12 target mRNAs were identified as potential biomarkers for keloid patients. The RT-qPCR results showed that miR-29a-3p, miR-92a-3p, and miR-143-3p were downregulated, and all their target mRNAs were upregulated in keloid tissue ( P < 0.05). The expression of COL1A1, COL1A2, COL3A1, COL5A1, and COL5A2 decreased when miR-29a-3p was overexpressed but increased when miR-29a-3p was knocked down ( P < 0.05). And these genes had a good performance in the diagnosis of keloid, especially when using keloid nonlesional skin or normal scar tissues as controls.

          Conclusion

          The miRNA-mRNA network, especially miR-29a-3p and its targets, may provide insights into the underlying pathogenesis of keloid and serve as potential biomarkers for keloid treatment.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data

          Although microRNAs (miRNAs), other non-coding RNAs (ncRNAs) (e.g. lncRNAs, pseudogenes and circRNAs) and competing endogenous RNAs (ceRNAs) have been implicated in cell-fate determination and in various human diseases, surprisingly little is known about the regulatory interaction networks among the multiple classes of RNAs. In this study, we developed starBase v2.0 (http://starbase.sysu.edu.cn/) to systematically identify the RNA–RNA and protein–RNA interaction networks from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, CLASH) data sets generated by 37 independent studies. By analyzing millions of RNA-binding protein binding sites, we identified ∼9000 miRNA-circRNA, 16 000 miRNA-pseudogene and 285 000 protein–RNA regulatory relationships. Moreover, starBase v2.0 has been updated to provide the most comprehensive CLIP-Seq experimentally supported miRNA-mRNA and miRNA-lncRNA interaction networks to date. We identified ∼10 000 ceRNA pairs from CLIP-supported miRNA target sites. By combining 13 functional genomic annotations, we developed miRFunction and ceRNAFunction web servers to predict the function of miRNAs and other ncRNAs from the miRNA-mediated regulatory networks. Finally, we developed interactive web implementations to provide visualization, analysis and downloading of the aforementioned large-scale data sets. This study will greatly expand our understanding of ncRNA functions and their coordinated regulatory networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment.

            Keloid and hypertrophic scars represent an aberrant response to the wound healing process. These scars are characterized by dysregulated growth with excessive collagen formation, and can be cosmetically and functionally disruptive to patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A microRNA-29 mimic (remlarsen) represses extracellular matrix expression and fibroplasia in the skin

              MicroRNA-29 (miR-29) negatively regulates fibrosis and is downregulated in multiple fibrotic organs and tissues, including in the skin. miR-29 mimics prevent pulmonary fibrosis in mouse models but have not previously been tested in the skin. This study aimed to identify pharmacodynamic biomarkers of miR-29 in mouse skin, to translate those biomarkers across multiple species, and to assess the pharmacodynamic activity of a miR-29b mimic (remlarsen) in a clinical trial. miR-29 biomarkers were selected based on gene function and mRNA expression using quantitative reverse transcriptase polymerase chain reaction. Those biomarkers comprised multiple collagens and other miR-29 direct and indirect targets and were conserved across species; remlarsen regulated their expression in mouse, rat, and rabbit skin wounds and in human skin fibroblasts in culture, while a miR-29 inhibitor reciprocally regulated their expression. Biomarker expression translated to clinical proof-of-mechanism; in a double-blinded, placebo-randomized, within-subject controlled clinical trial of single and multiple ascending doses of remlarsen in normal healthy volunteers, remlarsen repressed collagen expression and the development of fibroplasia in incisional skin wounds. These results suggest that remlarsen may be an effective therapeutic to prevent formation of a fibrotic scar (hypertrophic scar or keloid) or to prevent cutaneous fibrosis, such as scleroderma.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2022
                13 July 2022
                : 2022
                : 6487989
                Affiliations
                1School of Medicine, Xiamen University, Xiamen, China
                2Department of Burns and Plastic and Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
                Author notes

                Academic Editor: Sercan Ergün

                Author information
                https://orcid.org/0000-0003-4808-3012
                https://orcid.org/0000-0002-6110-110X
                Article
                10.1155/2022/6487989
                9300312
                35872873
                ede3ce17-5b3c-4508-a46a-83d4473e35a5
                Copyright © 2022 Yan He et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 March 2022
                : 24 April 2022
                : 8 June 2022
                Funding
                Funded by: Fujian Medical University
                Award ID: XHZDSYS202005
                Award ID: XHZDSYS202004
                Funded by: Xiamen University
                Award ID: PM201809170010
                Categories
                Research Article

                Comments

                Comment on this article