0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancing Crop Resilience: The Role of Plant Genetics, Transcription Factors, and Next-Generation Sequencing in Addressing Salt Stress

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salt stress is a major abiotic stressor that limits plant growth, development, and agricultural productivity, especially in regions with high soil salinity. With the increasing salinization of soils due to climate change, developing salt-tolerant crops has become essential for ensuring food security. This review consolidates recent advances in plant genetics, transcription factors (TFs), and next-generation sequencing (NGS) technologies that are pivotal for enhancing salt stress tolerance in crops. It highlights critical genes involved in ion homeostasis, osmotic adjustment, and stress signaling pathways, which contribute to plant resilience under saline conditions. Additionally, specific TF families, such as DREB, NAC (NAM, ATAF, and CUC), and WRKY, are explored for their roles in activating salt-responsive gene networks. By leveraging NGS technologies—including genome-wide association studies (GWASs) and RNA sequencing (RNA-seq)—this review provides insights into the complex genetic basis of salt tolerance, identifying novel genes and regulatory networks that underpin adaptive responses. Emphasizing the integration of genetic tools, TF research, and NGS, this review presents a comprehensive framework for accelerating the development of salt-tolerant crops, contributing to sustainable agriculture in saline-prone areas.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of salinity tolerance.

          The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na(+) or Cl() exclusion, and the tolerance of tissue to accumulated Na(+) or Cl(). Our understanding of the role of the HKT gene family in Na(+) exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na(+) accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.

            Various abiotic stresses lead to the overproduction of reactive oxygen species (ROS) in plants which are highly reactive and toxic and cause damage to proteins, lipids, carbohydrates and DNA which ultimately results in oxidative stress. The ROS comprises both free radical (O(2)(-), superoxide radicals; OH, hydroxyl radical; HO(2), perhydroxy radical and RO, alkoxy radicals) and non-radical (molecular) forms (H(2)O(2), hydrogen peroxide and (1)O(2), singlet oxygen). In chloroplasts, photosystem I and II (PSI and PSII) are the major sites for the production of (1)O(2) and O(2)(-). In mitochondria, complex I, ubiquinone and complex III of electron transport chain (ETC) are the major sites for the generation of O(2)(-). The antioxidant defense machinery protects plants against oxidative stress damages. Plants possess very efficient enzymatic (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione peroxidase, GPX; guaicol peroxidase, GOPX and glutathione-S- transferase, GST) and non-enzymatic (ascorbic acid, ASH; glutathione, GSH; phenolic compounds, alkaloids, non-protein amino acids and α-tocopherols) antioxidant defense systems which work in concert to control the cascades of uncontrolled oxidation and protect plant cells from oxidative damage by scavenging of ROS. ROS also influence the expression of a number of genes and therefore control the many processes like growth, cell cycle, programmed cell death (PCD), abiotic stress responses, pathogen defense, systemic signaling and development. In this review, we describe the biochemistry of ROS and their production sites, and ROS scavenging antioxidant defense machinery. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Yield Trends Are Insufficient to Double Global Crop Production by 2050

              Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption. Boosting crop yields to meet these rising demands, rather than clearing more land for agriculture has been highlighted as a preferred solution to meet this goal. However, we first need to understand how crop yields are changing globally, and whether we are on track to double production by 2050. Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops—maize, rice, wheat, and soybean—that currently produce nearly two-thirds of global agricultural calories. We find that yields in these top four crops are increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, non-compounding rates, respectively, which is less than the 2.4% per year rate required to double global production by 2050. At these rates global production in these crops would increase by ∼67%, ∼42%, ∼38%, and ∼55%, respectively, which is far below what is needed to meet projected demands in 2050. We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                December 2024
                November 22 2024
                : 25
                : 23
                : 12537
                Article
                10.3390/ijms252312537
                39684248
                ed752a30-15fc-4bdb-883a-96316778b0f9
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article