7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Long-wavelength fluorimetric determination of food antioxidant capacity using Nile blue as reagent.

      Journal of Agricultural and Food Chemistry
      Antioxidants, analysis, Beverages, Fluorometry, instrumentation, methods, Oxazines, chemistry, Vitamin E, Wine

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A method for the determination of the antioxidant capacity using long-wavelength fluorescence measurements is described for the first time. This method is a modification of the conventional oxygen radical absorbance capacity (ORAC) method that uses fluorescein or phycoerythrin and the generator of peroxyl radicals, 2,2'-azo-bis-(2-methylpropionamidine) dihydrochloride (AAPH). The long-wavelength fluorophor nile blue is proposed as an analytical reagent alternative to these conventional fluorophores. Kinetic curves have been obtained by monitoring the fluorescence variation (λex, 620; λem, 680 nm) with time, using the 96-well microplate format. The vitamin E analogue 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) has been chosen as the model analyte, and the normalized area under the decay curve has been used as the analytical parameter. The dynamic range of the calibration curve is 0.8-8.0 μM, and the detection limit is 0.45 μM. The precision of the method, expressed as relative standard deviation and assayed using 1 and 5 μM Trolox concentrations, was 5.6 and 2.9%, respectively. The method has been applied to the analysis of fruit juices and wines, obtaining results that did not differ significantly from those provided using the ORAC method with fluorescein as reagent.

          Related collections

          Author and article information

          Journal
          21366254
          10.1021/jf104538a

          Chemistry
          Antioxidants,analysis,Beverages,Fluorometry,instrumentation,methods,Oxazines,chemistry,Vitamin E,Wine
          Chemistry
          Antioxidants, analysis, Beverages, Fluorometry, instrumentation, methods, Oxazines, chemistry, Vitamin E, Wine

          Comments

          Comment on this article