5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complete chloroplast genome sequence of Scurrula notothixoides (Loranthaceae): a hemiparasitic shrub in South China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Scurrula notothixoides (Loranthaceae) is a hemiparasitic shrub distributed in forest margins of Southeast Asian countries. Here, we report and characterize the complete plastid genome sequence of S. notothixoides in an effort to provide genomic resources useful for the phylogenetic studies for Santalales. The complete plastome is 123,810 bp in length and contains the typical structure and gene content of angiosperm plastomes, including two inverted repeat (IR) regions of 23,101 bp, a large single copy (LSC) region of 71,448 bp and a small single copy (SSC) region of 6160 bp. The plastome contains 88 genes, consisting of 61 unique protein-coding genes, 23 unique tRNA genes and four unique rRNA genes. The overall A/T content in the plastome of S. notothixoides is 62.7%. Phylogenetic analyses were performed using the entire plastome, including spacers, introns, etc. and we recovered that S. notothixoides and Taxillus sutchuenensis was closely related. The complete plastome sequence of S. notothixoides will provide a useful resource for the phylogenetic studies for Santalales.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.

          RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML). Low-level technical optimizations, a modification of the search algorithm, and the use of the GTR+CAT approximation as replacement for GTR+Gamma yield a program that is between 2.7 and 52 times faster than the previous version of RAxML. A large-scale performance comparison with GARLI, PHYML, IQPNNI and MrBayes on real data containing 1000 up to 6722 taxa shows that RAxML requires at least 5.6 times less main memory and yields better trees in similar times than the best competing program (GARLI) on datasets up to 2500 taxa. On datasets > or =4000 taxa it also runs 2-3 times faster than GARLI. RAxML has been parallelized with MPI to conduct parallel multiple bootstraps and inferences on distinct starting trees. The program has been used to compute ML trees on two of the largest alignments to date containing 25,057 (1463 bp) and 2182 (51,089 bp) taxa, respectively. icwww.epfl.ch/~stamatak
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A rapid DNA isolation procedure for small quantities of fresh leaf tissue.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach

              We present an in silico approach for the reconstruction of complete mitochondrial genomes of non-model organisms directly from next-generation sequencing (NGS) data—mitochondrial baiting and iterative mapping (MITObim). The method is straightforward even if only (i) distantly related mitochondrial genomes or (ii) mitochondrial barcode sequences are available as starting-reference sequences or seeds, respectively. We demonstrate the efficiency of the approach in case studies using real NGS data sets of the two monogenean ectoparasites species Gyrodactylus thymalli and Gyrodactylus derjavinoides including their respective teleost hosts European grayling (Thymallus thymallus) and Rainbow trout (Oncorhynchus mykiss). MITObim appeared superior to existing tools in terms of accuracy, runtime and memory requirements and fully automatically recovered mitochondrial genomes exceeding 99.5% accuracy from total genomic DNA derived NGS data sets in <24 h using a standard desktop computer. The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR. We furthermore demonstrate the applicability of MITObim for metagenomic/pooled data sets using simulated data. MITObim is an easy to use tool even for biologists with modest bioinformatics experience. The software is made available as open source pipeline under the MIT license at https://github.com/chrishah/MITObim.
                Bookmark

                Author and article information

                Journal
                Mitochondrial DNA B Resour
                Mitochondrial DNA B Resour
                Mitochondrial DNA. Part B, Resources
                Taylor & Francis
                2380-2359
                11 May 2018
                2018
                : 3
                : 2
                : 580-581
                Affiliations
                Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry Hainan University , Haikou, China
                Author notes
                CONTACT Hua-Feng Wang wanghuafeng2012@ 123456foxmail.com Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry Hainan University , Haikou570228, China
                Article
                1471366
                10.1080/23802359.2018.1471366
                7799537
                33474249
                ecb80589-99d0-493d-8d25-a389adb83b86
                © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 1, Pages: 2, Words: 1122
                Categories
                Research Article
                Mitogenome Announcement

                scurrula notothixoides,illumina sequencing,plastome,loranthaceae,phylogenetic analysis,santalales

                Comments

                Comment on this article