5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plastome variation and phylogeny of Taxillus (Loranthaceae)

      research-article
      1 , * , 1 , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several molecular phylogenetic studies of the mistletoe family Loranthaceae have been published such that now the general pattern of relationships among the genera and their biogeographic histories are understood. Less is known about species relationships in the larger (> 10 species) genera. This study examines the taxonomically difficult genus Taxillus composed of 35–40 Asian species. The goal was to explore the genetic diversity present in Taxillus plastomes, locate genetically variable hotspots, and test these for their utility as potential DNA barcodes. Using genome skimming, complete plastomes, as well as nuclear and mitochondrial rDNA sequences, were newly generated for eight species. The plastome sequences were used in conjunction with seven publicly available Taxillus sequences and three sequences of Scurrula, a close generic relative. The Taxillus plastomes ranged from 121 to 123 kbp and encoded 90–93 plastid genes. In addition to all of the NADH dehydrogenase complex genes, four ribosomal genes, infA and four intron-containing tRNA genes were lost or pseudogenized in all of the Taxillus and Scurrula plastomes. The topologies of the plastome, mitochondrial rDNA and nuclear rDNA trees were generally congruent, though with discordance at the position of T. chinensis. Several variable regions in the plastomes were identified that have sufficient numbers of parsimony informative sites as to recover the major clades seen in the complete plastome tree. Instead of generating complete plastome sequences, our study showed that accD alone or the concatenation of accD and rbcL can be used in future studies to facilitate identification of Taxillus samples and to generate a molecular phylogeny with robust sampling within the genus.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Sequence Alignment/Map format and SAMtools

            Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fast and accurate short read alignment with Burrows–Wheeler transform

              Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Formal analysisRole: InvestigationRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: MethodologyRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                18 August 2021
                2021
                : 16
                : 8
                : e0256345
                Affiliations
                [1 ] Department of Earth and Life Sciences, University of Taipei, Taipei, Taiwan
                [2 ] Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
                National Cheng Kung University, TAIWAN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0001-5751-7260
                https://orcid.org/0000-0001-8519-0517
                Article
                PONE-D-21-05074
                10.1371/journal.pone.0256345
                8372910
                34407123
                25951827-7b57-45f3-b6e5-f16ff6c701d5
                © 2021 Su et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 February 2021
                : 5 August 2021
                Page count
                Figures: 5, Tables: 1, Pages: 19
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100004663, Ministry of Science and Technology, Taiwan;
                Award ID: 106-2311-B-845-001-MY3 and 109-2311–B-845-001
                Award Recipient :
                This study was funded by MOST grants (106-2311-B-845-001-MY3 and 109-2311–B-845-001) from Ministry of Science and Technology, Taiwan to HJS.
                Categories
                Research Article
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Systematics
                Phylogenetics
                Phylogenetic Analysis
                Biology and Life Sciences
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Phylogenetic Analysis
                Computer and Information Sciences
                Data Management
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Phylogenetic Analysis
                Biology and Life Sciences
                Evolutionary Biology
                Evolutionary Systematics
                Phylogenetics
                Biology and Life Sciences
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Computer and Information Sciences
                Data Management
                Taxonomy
                Evolutionary Systematics
                Phylogenetics
                Biology and Life Sciences
                Cell Biology
                Plant Cell Biology
                Plastids
                Biology and Life Sciences
                Plant Science
                Plant Cell Biology
                Plastids
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Database and Informatics Methods
                Bioinformatics
                Sequence Analysis
                Sequence Alignment
                Biology and Life Sciences
                Biochemistry
                Bioenergetics
                Energy-Producing Organelles
                Mitochondria
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Energy-Producing Organelles
                Mitochondria
                Biology and Life Sciences
                Organisms
                Eukaryota
                Plants
                Fruits
                Biology and Life Sciences
                Genetics
                Genomics
                Plant Genomics
                Biology and Life Sciences
                Bioengineering
                Biotechnology
                Plant Biotechnology
                Plant Genomics
                Engineering and Technology
                Bioengineering
                Biotechnology
                Plant Biotechnology
                Plant Genomics
                Biology and Life Sciences
                Plant Science
                Plant Biotechnology
                Plant Genomics
                Biology and Life Sciences
                Genetics
                Plant Genetics
                Plant Genomics
                Biology and Life Sciences
                Plant Science
                Plant Genetics
                Plant Genomics
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article