1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of hydrolysable tannin-treated grass silage on milk yield and composition, nitrogen partitioning and nitrogen isotopic discrimination in lactating dairy cows

      , , , ,
      Animal
      Cambridge University Press (CUP)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition.

          Tannins (hydrolysable and condensed tannin) are polyphenolic polymers of relatively high molecular weight with the capacity to form complexes mainly with proteins due to the presence of a large number of phenolic hydroxyl groups. They are widely distributed in nutritionally important forage trees, shrubs and legumes, cereals and grains, which are considered as anti-nutritional compounds due to their adverse effects on intake and animal performance. However, tannins have been recognised to modulate rumen fermentation favourably such as reducing protein degradation in the rumen, prevention of bloat, inhibition of methanogenesis and increasing conjugated linoleic acid concentrations in ruminant-derived foods. The inclusion of tannins in diets has been shown to improve body weight and wool growth, milk yields and reproductive performance. However, the beneficial effects on rumen modulation and animal performance have not been consistently observed. This review discusses the effects of tannins on nitrogen metabolism in the rumen and intestine, and microbial populations (bacteria, protozoa, fungi and archaea), metabolism of tannins, microbial tolerance mechanisms to tannins, inhibition of methanogenesis, ruminal biohydrogenation processes and performance of animals. The discrepancies of responses of tannins among different studies are attributed to the different chemical structures (degree of polymerisation, procyanidins to propdelphinidins, stereochemistry and C-C bonding) and concentrations of tannins, and type of diets. An establishment of structure-activity relationship would be required to explain differences among studies and obtain consistent beneficial tannin effects. Copyright © 2010 Society of Chemical Industry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats.

            The objectives of this study were to evaluate the potential for using blood urea N concentration to predict urinary N excretion rate, and to develop a mathematical model to estimate important variables of N utilization for several different species of farm animals and for rats. Treatment means (n = 251) from 41 research publications were used to develop mathematical relationships. There was a strong linear relationship between blood urea N concentration (mg/100 mL) and rate of N excretion (g x d(-1) x kg BW(-1)) for all animal species investigated. The N clearance rate of the kidney (L of blood cleared of urea x d(-1) x kg BW(-1)) was greater for pigs and rats than for herbivores (cattle, sheep, goats, horses). A model was developed to estimate parameters of N utilization. Driving variables for the model included blood urea N concentration (mg/100 mL), BW (kg), milk production rate (kg/d), and ADG (kg/d), and response variables included urinary N excretion rate (g/d), fecal N excretion rate (g/d), rate of N intake (g/d), and N utilization efficiency (N in milk and gain per unit of N intake). Prediction errors varied widely depending on the variable and species of animal, with most of the variation attributed to study differences. Blood urea N concentration (mg/100 mL) can be used to predict relative differences in urinary N excretion rate (g/d) for animals of a similar type and stage of production within a study, but is less reliable across animal types or studies. Blood urea N concentration (mg/100 mL) can be further integrated with estimates of N digestibility (g/g) and N retention (g/d) to predict fecal N (g/d), N intake (g/d), and N utilization efficiency (grams of N in milk and meat per gram of N intake). Target values of blood urea N concentration (mg/100 mL) can be backcalculated from required dietary N (g/d) and expected protein digestibility. Blood urea N can be used in various animal species to quantify N utilization and excretion rates.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Nitrogen isotopes in mammalian herbivores: hair ?15N values from a controlled feeding study

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Animal
                Animal
                Cambridge University Press (CUP)
                17517311
                2020
                2020
                : 14
                : 4
                : 771-779
                Article
                10.1017/S175173111900226X
                31597589
                ec61f5f9-cb10-4bbd-838e-e37b16bc4331
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article