20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PROTECTIVE EFFECTS OF ETHYL ACETATE EXTRACTION FROM GASTRODIA ELATA BLUME ON BLOOD-BRAIN BARRIER IN FOCAL CEREBRAL ISCHEMIA REPERFUSION

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Damage of the blood brain barrier (BBB) during the process of cerebral ischemic injury is a key factor which influences the therapeutic efficacy to the cerebral ischemic injury. The present study was designed to verify the mechanisms underlying the protective effects of the ethyl acetate (EtOAc) extraction from Gastrodia elata Blume (GEB) on the BBB by developing a model of cerebral ischemia-reperfusion in rats.

          Material and methods:

          MCAO/R model in rats was developed through a thread embolism method. The neurological scales, the moisture and the evans blue (EB) contents of brains were detected. Meanwhile, the release of nitric oxide (NO) and activities of NO synthase (NOS) in brain tissues were measured. Western blotting analyses were also performed to assess the protein expressions of AQP-4, Occludin and Claudin-5 in brain tissue.

          Results:

          After rats were pretreated with different concentrations of EtOAc extractions from GEB, the neurologic scores, the EB contents in the brain tissues and the moisture of the brains were significantly decreased. Meanwhile, the release of NO, the activities of nNOS and iNOS were notably inhibited. Furthemore, the protein expression of AQP-4 was markedly decreased, but the protein expressions of -5 and Occludin were significantly increased.

          Conclusion:

          the EtOAc extracts of GEB may decrease the permeability of BBB when focal cerebral ischemia occurs. The inhibition of the NOS pathways, the attenuation of the protein expression of AQP-4 and the enhancement of the expressions of the tight junction proteins may contribute to the protective effects of the EtOAc extracts from GEB on BBB.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet.

          Tissue- and cell-specific deletion of the Aqp4 gene is required to differentiate between the numerous pools of aquaporin-4 (AQP4) water channels. A glial-conditional Aqp4 knockout mouse line was generated to resolve whether astroglial AQP4 controls water exchange across the blood-brain interface. The conditional knockout was driven by the glial fibrillary acidic protein promoter. Brains from conditional Aqp4 knockouts were devoid of AQP4 as assessed by Western blots, ruling out the presence of a significant endothelial pool of AQP4. In agreement, immunofluorescence analysis of cryostate sections and quantitative immunogold analysis of ultrathin sections revealed no AQP4 signals in capillary endothelia. Compared with litter controls, glial-conditional Aqp4 knockout mice showed a 31% reduction in brain water uptake after systemic hypoosmotic stress and a delayed postnatal resorption of brain water. Deletion of astroglial Aqp4 did not affect the barrier function to macromolecules. Our data suggest that the blood-brain barrier (BBB) is more complex than anticipated. Notably, under certain conditions, the astrocyte covering of brain microvessels is rate limiting to water movement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury.

            The roles of caveolin-1 (cav-1) in regulating blood-brain barrier (BBB) permeability are unclear yet. We previously reported that cav-1 was down-regulated and the production of nitric oxide (NO) induced the loss of cav-1 in focal cerebral ischemia and reperfusion injury. The present study aims to address whether the loss of cav-1 impacts on BBB permeability and matrix metalloproteinases (MMPs) activity during cerebral ischemia-reperfusion injury. We found that focal cerebral ischemia-reperfusion down-regulated the expression of cav-1 in isolated cortex microvessels, hippocampus, and cortex of ischemic brain. The down-regulation of cav-1 was correlated with the increased MMP-2 and -9 activities, decreased tight junction (TJ) protein zonula occludens (ZO)-1 expression and enhanced BBB permeability. Treatment of N(G) -nitro-L-arginine methyl ester [L-NAME, a non-selective nitric oxide synthase (NOS) inhibitor] reserved the expression of cav-1, inhibited MMPs activity, and reduced BBB permeability. To elucidate the roles of cav-1 in regulating MMPs and BBB permeability, we used two approaches including cav-1 knockdown in cultured brain microvascular endothelial cells (BMECs) in vitro and cav-1 knockout (KO) mice in vivo. Cav-1 knockdown remarkably increased MMPs activity in BMECs. Meanwhile, with focal cerebral ischemia-reperfusion, cav-1 deficiency mice displayed higher MMPs activities and BBB permeability than wild-type mice. Interestingly, the effects of L-NAME on MMPs activity and BBB permeability was partly reversed in cav-1 deficiency mice. These results, when taken together, suggest that cav-1 plays important roles in regulating MMPs activity and BBB permeability in focal cerebral ischemia and reperfusion injury. The effects of L-NAME on MMPs activity and BBB permeability are partly mediated by preservation of cav-1. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chlorogenic acid ameliorates brain damage and edema by inhibiting matrix metalloproteinase-2 and 9 in a rat model of focal cerebral ischemia.

              Chlorogenic acid (CGA) has been reported to have various beneficial effects on the cardiovascular and central nervous systems. The purpose of the current study was to investigate whether CGA has protective effects against cerebral ischemia and whether these effects are due to modification of brain edema-related vascular factors. In a rat model of transient middle cerebral artery occlusion (MCAo, 2h of occlusion followed by 22 h of reperfusion), we measured infarct volume and performed behavioral test to evaluate the effects of CGA on brain damage and sensory-motor functional deficits. Brain water content and Evans blue extravasation were measured to evaluate brain edema and blood brain barrier (BBB) damage. Lipid peroxidation (LPO) and the expressions and activities of matrix metalloproteinase (MMP)-2 and MMP-9 were measured to investigate the mechanisms of action. Intraperitoneal injection of CGA (3, 10, and 30 mg/kg) at 0 h and 2h after MCAo dose-dependently reduced infarct volume and sensory-motor functional deficits. It also reduced brain water content and Evans blue extravasation. Mechanistically, CGA reduced LPO and MMPs expressions and activities. These results suggest that CGA reduces brain damage, BBB damage and brain edema by radical scavenging activity and the inhibitory effects on MMP-2 and MMP-9. Copyright © 2012 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Afr J Tradit Complement Altern Med
                Afr J Tradit Complement Altern Med
                AJTCAM
                African Journal of Traditional, Complementary, and Alternative Medicines
                African Traditional Herbal Medicine Supporters Initiative (ATHMSI) (Nigeria )
                0189-6016
                2505-0044
                2016
                03 July 2016
                : 13
                : 4
                : 199-209
                Affiliations
                [1 ]The Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
                [2 ]The Key Modern Research Laboratory for Ethno-pharmacognosy of Yunnan Higher School, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
                [3 ]Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
                Author notes
                Article
                AJTCAM-13-199
                10.21010/ajtcam.v13i4.26
                5566145
                28852737
                eba815b0-ee56-4741-8d6d-0a378cdafe66
                Copyright: © 2016 Afr. J. Traditional Complementary and Alternative Medicines

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

                History
                Categories
                Article

                gastrodia elata blume,blood-brain barrier,tj,aqp-4
                gastrodia elata blume, blood-brain barrier, tj, aqp-4

                Comments

                Comment on this article