4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decrease in beneficial bacteria and increase in harmful bacteria in Gastrodia seedlings and their surrounding soil are mainly responsible for degradation of Gastrodia asexual propagation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Asexual reproduction of Gastrodia elata Bl. f. glauca S. chow (GeB) produces degeneration with increasing number of GeB. Therefore, we analyzed the microorganisms of GeB seedlings and surrounding soil by Illumina Miseq high-throughput sequencing technology.

          Methods

          In this study, Illumina Miseq high-throughput sequencing technology was applied to analyze the types and quantities of GeB seedlings and surrounding soil microorganisms in the first to third generations of asexual reproduction, isolated and identified the dominant strains of GeB in the first to third generations and screened the antagonistic bacteria of its pathogenic fungi, and evaluated the effects of beneficial bacteria on the production performance of seedlings planted with GeB.

          Results

          With an increase in the number of asexual reproductive generations, the number of pathogenic fungi and bacteria in GeB seedlings and the surrounding soil increased, and the number of beneficial fungi and bacteria decreased. Pseudomonas sp., Agrobacterium rhizomes, and Herbaspirillum hiltneri were isolated and identified in the first generation, and Trichoderma harzianum, Penicillium viridiatum, Fusarium oxysporum, and Novosphingobium sp. Were isolated and identified in the third generation. Antagonistic strains of the three pathogenic bacterial strains were screened. In conclusion, beneficial bacteria significantly improved the production performance of asexual reproductive seedlings planted with GeB.

          Discussion

          In conclusion, our findings suggested that the microorganisms of GeB seedlings and the surrounding soil change as the number of generations of GeB reproduction increases, disrupts the microecological balance of surrounding soil and endophytic microbiomes.This study provides a theoretical basis for the degradation of asexual reproduction in GeB.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Defining the healthy "core microbiome" of oral microbial communities

          Background Most studies examining the commensal human oral microbiome are focused on disease or are limited in methodology. In order to diagnose and treat diseases at an early and reversible stage an in-depth definition of health is indispensible. The aim of this study therefore was to define the healthy oral microbiome using recent advances in sequencing technology (454 pyrosequencing). Results We sampled and sequenced microbiomes from several intraoral niches (dental surfaces, cheek, hard palate, tongue and saliva) in three healthy individuals. Within an individual oral cavity, we found over 3600 unique sequences, over 500 different OTUs or "species-level" phylotypes (sequences that clustered at 3% genetic difference) and 88 - 104 higher taxa (genus or more inclusive taxon). The predominant taxa belonged to Firmicutes (genus Streptococcus, family Veillonellaceae, genus Granulicatella), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Corynebacterium, Rothia, Actinomyces), Bacteroidetes (genus Prevotella, Capnocytophaga, Porphyromonas) and Fusobacteria (genus Fusobacterium). Each individual sample harboured on average 266 "species-level" phylotypes (SD 67; range 123 - 326) with cheek samples being the least diverse and the dental samples from approximal surfaces showing the highest diversity. Principal component analysis discriminated the profiles of the samples originating from shedding surfaces (mucosa of tongue, cheek and palate) from the samples that were obtained from solid surfaces (teeth). There was a large overlap in the higher taxa, "species-level" phylotypes and unique sequences among the three microbiomes: 84% of the higher taxa, 75% of the OTUs and 65% of the unique sequences were present in at least two of the three microbiomes. The three individuals shared 1660 of 6315 unique sequences. These 1660 sequences (the "core microbiome") contributed 66% of the reads. The overlapping OTUs contributed to 94% of the reads, while nearly all reads (99.8%) belonged to the shared higher taxa. Conclusions We obtained the first insight into the diversity and uniqueness of individual oral microbiomes at a resolution of next-generation sequencing. We showed that a major proportion of bacterial sequences of unrelated healthy individuals is identical, supporting the concept of a core microbiome at health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion.

            Endophytic and epiphytic bacteria were isolated from two soybean cultivars (Foscarin and Cristalina). Significant differences were observed in bacterial population densities in relation to season of isolation, soybean growth phase and the tissues from which the isolates were obtained. The isolates were identified by partial 16S rDNA sequence analysis, with most of the isolates belonging to the Pseudomonaceae, Burkholderiacea and Enterobacteriaceae groups. The potential of the isolates for plant growth promotion was evaluated by screening for indoleacetic acid (IAA) production and mineral phosphate solubilization; 34% of endophytic bacteria produced IAA and 49% were able to solubilize mineral phosphate whereas only 21% of epiphytic bacteria produced IAA although 52% were able to solubilize mineral phosphate. A high frequency of IAA producing isolates occurred in the early ripening Foscarin cultivar whereas a high percentage of phosphate solubilizing isolates were obtained from plants in the initial development stage (V6). We also found that 60% of endophytic and 69% of epiphytic isolates that produced IAA and solubilized mineral phosphate were also able to fix nitrogen in vitro. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the genera Pseudomonas, Ralstonia, Enterobacter, Pantoea and Acinetobacter.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities.

              Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.
                Bookmark

                Author and article information

                Contributors
                Role: Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/2308938Role: Role: Role:
                Role: Role:
                Role: Role:
                Role: Role:
                URI : https://loop.frontiersin.org/people/2216401Role: Role:
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                06 February 2024
                2024
                : 15
                : 1334958
                Affiliations
                [1] 1 College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding, National Administration of Traditional Chinese Medicine, Jilin Agricultural University , Changchun, China
                [2] 2 Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , Nanjing, China
                Author notes

                Edited by: Domingo Martinez-Soto, Center for Scientific Research and Higher Education in Ensenada (CICESE), Mexico

                Reviewed by: Luis Fernando Garcia-Ortega, National Polytechnic Institute of Mexico (CINVESTAV), Mexico

                Houlin Yu, Broad Institute, United States

                Rosario Razo Belman, Universidad de Guanajuato, Mexico

                *Correspondence: Yugang Gao, jlnydxgyg@ 123456163.com ; Qun Liu, liuqun1025265208@ 123456sina.com
                Article
                10.3389/fpls.2024.1334958
                10877603
                38379940
                33759b88-00c8-4f01-8a5b-76d3173be4f2
                Copyright © 2024 Wang, Gao, Zang, Zhang, Yang and Liu

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 November 2023
                : 10 January 2024
                Page count
                Figures: 8, Tables: 5, Equations: 0, References: 49, Pages: 17, Words: 8501
                Funding
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was also supported by the Science and Technology Development Program of Jilin Province (Grant No. 20210401093YY, 20220401110YY), and this study was supported by the National Key Research and Development Programme (Grant No. 2022YFF1300503-04).
                Categories
                Plant Science
                Original Research
                Custom metadata
                Plant Pathogen Interactions

                Plant science & Botany
                gastrodia elata bl. f. glauca s. chow,changbai mountain,asexual reproduction degradation,microbial diversity,isolation and characterization,antagonistic strains

                Comments

                Comment on this article