31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionella nucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.

          Author Summary

          Mitochondrial carrier proteins evolved during endosymbiosis to transport substrates across the mitochondrial inner membrane. As such the proteins are associated exclusively with eukaryotic organisms. Despite this, we identified putative mitochondrial carrier proteins in the genomes of different intracellular bacterial pathogens, including Legionella pneumophila, the causative agent of Legionnaire's disease. We named the mitochondrial carrier protein from L. pneumophila LncP and determined that the protein is translocated into host cells during infection by the bacterial Dot/Icm type IV secretion system. From there, LncP accesses the classical mitochondrial import pathway and is incorporated into the mitochondrial inner membrane as an integral membrane protein. Remarkably, LncP crosses five biological membranes to reach its final location. Biochemically, LncP is a unidirectional nucleotide transporter similar to Aac1 in yeast. Although not essential for intracellular replication, the high carriage rate of lncP among isolates of L. pneumophila suggests that the ability of the pathogen to manipulate mitochondrial ATP transport assists survival of the bacteria in an intracellular environment.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Profile hidden Markov models.

          S. Eddy (1998)
          The recent literature on profile hidden Markov model (profile HMM) methods and software is reviewed. Profile HMMs turn a multiple sequence alignment into a position-specific scoring system suitable for searching databases for remotely homologous sequences. Profile HMM analyses complement standard pairwise comparison methods for large-scale sequence analysis. Several software implementations and two large libraries of profile HMMs of common protein domains are available. HMM methods performed comparably to threading methods in the CASP2 structure prediction exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Translocation of proteins into mitochondria.

            About 10% to 15% of the nuclear genes of eukaryotic organisms encode mitochondrial proteins. These proteins are synthesized in the cytosol and recognized by receptors on the surface of mitochondria. Translocases in the outer and inner membrane of mitochondria mediate the import and intramitochondrial sorting of these proteins; ATP and the membrane potential are used as energy sources. Chaperones and auxiliary factors assist in the folding and assembly of mitochondrial proteins into their native, three-dimensional structures. This review summarizes the present knowledge on the import and sorting of mitochondrial precursor proteins, with a special emphasis on unresolved questions and topics of current research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside.

              ATP, the principal energy currency of the cell, fuels most biosynthetic reactions in the cytoplasm by its hydrolysis into ADP and inorganic phosphate. Because resynthesis of ATP occurs in the mitochondrial matrix, ATP is exported into the cytoplasm while ADP is imported into the matrix. The exchange is accomplished by a single protein, the ADP/ATP carrier. Here we have solved the bovine carrier structure at a resolution of 2.2 A by X-ray crystallography in complex with an inhibitor, carboxyatractyloside. Six alpha-helices form a compact transmembrane domain, which, at the surface towards the space between inner and outer mitochondrial membranes, reveals a deep depression. At its bottom, a hexapeptide carrying the signature of nucleotide carriers (RRRMMM) is located. Our structure, together with earlier biochemical results, suggests that transport substrates bind to the bottom of the cavity and that translocation results from a transient transition from a 'pit' to a 'channel' conformation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                January 2012
                January 2012
                5 January 2012
                : 8
                : 1
                : e1002459
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
                [2 ]Department of Parasitology, Charles University, Prague, Czech Republic
                [3 ]Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
                [4 ]Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
                [5 ]Department of Tropical Medicine, 1st Faculty of Medicine, Charles University in Prague and Faculty Hospital Bulovka, Prague, Czech Republic
                [6 ]Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
                Yale University School of Medicine, United States of America
                Author notes

                ¤: Current address: Uppsala BioCenter, Department of Plant Biology and Forest Genetics, The Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden

                Conceived and designed the experiments: PD MA JT JHJ CMM EB FP KG GG ELH TL. Performed the experiments: PD MA SFL RS JT JHJ CMM EB GG. Analyzed the data: PD SB TN JT JHJ CMM EB FP KG GG ELH TL. Contributed reagents/materials/analysis tools: AM GF. Wrote the paper: PD ELH TL FP.

                Article
                PPATHOGENS-D-11-01245
                10.1371/journal.ppat.1002459
                3252375
                22241989
                eb6c726f-6ab2-4abb-9eda-aaad0e9faeca
                Dolezal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 June 2011
                : 9 November 2011
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Biochemistry
                Genomics
                Microbiology
                Molecular Cell Biology
                Medicine
                Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article