31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Silymarin Ameliorates Metabolic Dysfunction Associated with Diet-Induced Obesity via Activation of Farnesyl X Receptor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and purpose: Silymarin, a standardized extract of the milk thistle seeds, has been widely used to treat chronic hepatitis, cirrhosis, and other types of toxic liver damage. Despite increasing studies on the action of silymarin and its major active constituent, silybin in their therapeutic properties against insulin resistance, diabetes and hyperlipidaemia in vitro and in vivo, the mechanism underlying silymarin action remains unclear.

          Experimental approach: C57BL/6 mice were fed high-fat diet (HFD) for 3 months to induce obesity, insulin resistance, hyperlipidaemia, and fatty liver. These mice were then continuously treated with HFD alone or mixed with silymarin at 40 mg/100 g for additional 6 weeks. Biochemical analysis was used to test the serum lipid and bile acid profiles. Farnesyl X receptor (FXR) and nuclear factor kappa B (NF-κB) transactivities were analyzed in liver using a gene reporter assay based on quantitative RT-PCR.

          Key results: Silymarin treatment ameliorated insulin resistance, dyslipidaemia and inflammation, and reconstituted the bile acid pool in liver of diet-induced obesity. Associated with this, silybin and silymarin enhanced FXR transactivity. Consistently, in HepG2 cells, silybin inhibited NF-κB signaling, which was enhanced by FXR activation.

          Conclusion and implications: Our results suggest that silybin is an effective component of silymarin for treating metabolic syndrome by stimulating FXR signaling.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a nuclear receptor for bile acids.

          Bile acids are essential for the solubilization and transport of dietary lipids and are the major products of cholesterol catabolism. Results presented here show that bile acids are physiological ligands for the farnesoid X receptor (FXR), an orphan nuclear receptor. When bound to bile acids, FXR repressed transcription of the gene encoding cholesterol 7alpha-hydroxylase, which is the rate-limiting enzyme in bile acid synthesis, and activated the gene encoding intestinal bile acid-binding protein, which is a candidate bile acid transporter. These results demonstrate a mechanism by which bile acids transcriptionally regulate their biosynthesis and enterohepatic transport.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis.

            Mice lacking the nuclear bile acid receptor FXR/BAR developed normally and were outwardly identical to wild-type littermates. FXR/BAR null mice were distinguished from wild-type mice by elevated serum bile acid, cholesterol, and triglycerides, increased hepatic cholesterol and triglycerides, and a proatherogenic serum lipoprotein profile. FXR/BAR null mice also had reduced bile acid pools and reduced fecal bile acid excretion due to decreased expression of the major hepatic canalicular bile acid transport protein. Bile acid repression and induction of cholesterol 7alpha-hydroxylase and the ileal bile acid binding protein, respectively, did not occur in FXR/BAR null mice, establishing the regulatory role of FXR/BAR for the expression of these genes in vivo. These data demonstrate that FXR/BAR is critical for bile acid and lipid homeostasis by virtue of its role as an intracellular bile acid sensor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease.

              Inflammatory bowel disease (IBD) is characterised by chronic intestinal inflammation, resulting from dysregulation of the mucosal immune system and compromised intestinal epithelial barrier function. The bile salt, nuclear farnesoid X receptor (FXR), was recently implicated in intestinal antibacterial defence and barrier function. The aim of this study was to investigate the therapeutic potential of FXR agonists in the treatment of intestinal inflammation in complementary in vivo and in vitro models. Colitis was induced in wild-type (WT) and Fxr-null mice using dextran sodium sulfate, and in WT mice using trinitrobenzenesulfonic acid. Mice were treated with vehicle or the FXR agonist INT-747, and colitis symptoms were assessed daily. Epithelial permeability assays and cytokine expression analysis were conducted in mouse colon and enterocyte-like cells (Caco-2/HT29) treated with medium or INT-747. Inflammatory cytokine secretion was determined by ELISA in various human immune cell types. INT-747-treated WT mice are protected from DSS- and TNBS-induced colitis, as shown by significant reduction of body weight loss, epithelial permeability, rectal bleeding, colonic shortening, ulceration, inflammatory cell infiltration and goblet cell loss. Furthermore, Fxr activation in intestines of WT mice and differentiated enterocyte-like cells downregulates expression of key proinflammatory cytokines and preserves epithelial barrier function. INT-747 significantly decreases tumour necrosis factor α secretion in activated human peripheral blood mononuclear cells, purified CD14 monocytes and dendritic cells, as well as in lamina propria mononuclear cells from patients with IBD. FXR activation prevents chemically induced intestinal inflammation, with improvement of colitis symptoms, inhibition of epithelial permeability, and reduced goblet cell loss. Furthermore, FXR activation inhibits proinflammatory cytokine production in vivo in the mouse colonic mucosa, and ex vivo in different immune cell populations. The findings provide a rationale to explore FXR agonists as a novel therapeutic strategy for IBD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                28 September 2016
                2016
                : 7
                : 345
                Affiliations
                [1] 1School of Pharmacy, Shanghai University of Traditional Chinese Medicine Shanghai, China
                [2] 2School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai, China
                [3] 3Brown Foundation Institute of Molecular Medicine and Program in Neuroscience, Graduate School of Biological Sciences, University of Texas McGovern Medical School Houston, TX, USA
                [4] 4Research Centre for Traditional Chinese Medicine of Complexity Systems, Shanghai University of Traditional Chinese Medicine Shanghai, China
                [5] 5Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine Shanghai, China
                Author notes

                Edited by: Giovanni Li Volti, University of Catania, Italy

                Reviewed by: Stephen J. Polyak, University of Washington, USA; Federico Salomone, Azienda Sanitaria Provinciale di Catania, Italy

                *Correspondence: Guang Ji, jiliver@ 123456vip.sina.com Cheng Huang, chuang@ 123456shutcm.edu.cn

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2016.00345
                5039206
                27733832
                ea905db3-cb73-41ba-8bbd-3461e3a683cd
                Copyright © 2016 Gu, Zhao, Huang, Zhao, Wang, Li, Li, Fan, Ma, Tong, Yang, Ji and Huang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 July 2016
                : 14 September 2016
                Page count
                Figures: 7, Tables: 3, Equations: 0, References: 63, Pages: 14, Words: 0
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                silymarin,silybin,metabolic syndrome,non-alcoholic fatty liver disease,farnesyl x receptor

                Comments

                Comment on this article