1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multimodal Artificial Neurological Sensory–Memory System Based on Flexible Carbon Nanotube Synaptic Transistor

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Flexible triboelectric generator

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Short-term plasticity and long-term potentiation mimicked in single inorganic synapses.

            Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs 1-4). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag(2)S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag(2)S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag(2)S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics.

              Flexible nanogenerators that efficiently convert mechanical energy into electrical energy have been extensively studied because of their great potential for driving low-power personal electronics and self-powered sensors. Integration of flexibility and stretchability to nanogenerator has important research significance that enables applications in flexible/stretchable electronics, organic optoelectronics, and wearable electronics. Progress in nanogenerators for mechanical energy harvesting is reviewed, mainly including two key technologies: flexible piezoelectric nanogenerators (PENGs) and flexible triboelectric nanogenerators (TENGs). By means of material classification, various approaches of PENGs based on ZnO nanowires, lead zirconate titanate (PZT), poly(vinylidene fluoride) (PVDF), 2D materials, and composite materials are introduced. For flexible TENG, its structural designs and factors determining its output performance are discussed, as well as its integration, fabrication and applications. The latest representative achievements regarding the hybrid nanogenerator are also summarized. Finally, some perspectives and challenges in this field are discussed.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ACS Nano
                ACS Nano
                American Chemical Society (ACS)
                1936-0851
                1936-086X
                September 28 2021
                September 02 2021
                September 28 2021
                : 15
                : 9
                : 14587-14597
                Affiliations
                [1 ]State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
                [2 ]Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
                Article
                10.1021/acsnano.1c04298
                34472329
                ea647a0c-df0a-4737-9eca-e6c5063aaaea
                © 2021

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article